

Grand Challenges Scholar Program Workshop Belo Horizonte, August 5, 2019

The role of science and engineering in climate change and the implementation of the sustainable development goals

Paulo Artaxo University of São Paulo, Brazil Artaxo@if.usp.br Strong linkages between climate and achievement of the Sustainable Development Goals

There are synergies and trade-offs in terms of climate costs on implementing the Sustainable Development Goals

Direct linkages are shown with bold arrows, indirect linkages with light arrows.

We are changing the face of our world very quickly and in many ways

Which will be the impacts in our society of these changes? Will Stefan, 2015

THE INTERNATIONAL WEIRING COMMAN OF SCIENCE

The **Economist**

Economist.com

MAY 28TH-JUNE 38D 2011

Getting Spain's protesters off the plazas Obama, Bibi and peace The costly war on cancer How the brain drain reduces poverty A soft landing for China elcome to the Anthrop

The Anthropocene is a time when humans and our civilization became a major geophysical planetary force

SCIENTIFICALLY

SPEAKING

BUILDING

BRIDGES

IMAN EPOCH Anthropocene massiann

TAKING IT

PERSONALLY

utivity of risk

DOM:NOTIN

The Economist, 2011

Impact of human activity on our planet

IPBES, 2018

Planetary boundaries: Where is the safe space for humanity?

9 Boundaries identified

4 transgressed:

- Climate
- Biosphere integrity
- Land use (deforestation)
- Biogeochemical flows (N and P fertilizer use)

Science Feb 2015

Planetary Boundaries

A safe operating space for humanity

Carbon emissions from 1870 to today: Energy from fossil fuel dominates

Source: Global Carbon Project 2016

Global emissions from fossil fuel and industry: 36.8 GtCO₂ in 2017, 62% over 1990

Increase in the concentration of carbon dioxide (CO₂) and methane (CH₄)

CH₄: increase from 650 ppb to 1865 ppb CO₂: increase from 280 ppm to 415 ppm GLOBAL MONTHLY MEAN CO. GLOBAL MONTHLY MEAN CH4 PARTS PER MILLION CH4 mole fraction (ppb) 0021 0021 0081 Aarch 2019 1600<u>-</u> 1980 YEAR Year

Mauna Loa CO₂ reached 415 ppm, the highest value in the last 3 millions years

Increase in CO₂ and reduction in O₂

Earth Energy budget (W/m²)

The global annual mean energy budget of Earth for the approximate period 2000–2010. All fluxes are in Wm⁻². Solar fluxes are in yellow and infrared fluxes in pink. The four flux quantities in purple-shaded boxes represent the principal components of the atmospheric energy balance. (Stephens, Nature 2012)

Sources and sinks of CO₂ (2006-2016)

Sources

16.4 GtCO₂/yr **44%**

Sinks

31% 11.6 GtCO₂/yr

9% 3.5 GtCO₂/yr

Source: Le Quéré et al 2016; Global Carbon Budget 2016

Global Surface Temperature 1880-1920 base period

Observed increase in Temperature 1901 to 2012 Spatial distribution not homogeneous

Source: IPCC 2018 Special Report on Global Warming of 1.5°C

South American (a) temperature anomalies (°C) and (b) precipitation anomalies

base period: 1981–2010. Source 2016: State of the Climate in 2015, Bull. Amer. Meteor. Soc., 97 (8), 2016.

Ocean temperatures also increasing - 1959 - 2008

Seal level rise - 1860 to 2010

Source: Church and White (2011).

South America in the future?

- 12

Georgetown Paramaribo

Lima

Asunción

Rio de Janeiro

Buenos Aires Mo

3000

Montevideo

National Geographic + USGS topography

Reshaping the continents

Luanda

Cape Town

Tripoli

Dakar Bissau

Freetown

Monrovia

Abidjan Accra

Alexandria (

National Geographic + USGS topography

Mogadishu

Mombasa

Dar es Salaam

The changing terrestrial water cycle (in cm per year) GRACE satellite from 2002 to 2016

Terrestrial water cycle: sum of groundwater, soil moisture, surface waters, snow and ice

The Radiative Forcing of the global climate system (IPCC 2013)

		Emitted Compound	Resulting Atmospheric Drivers		Ra	idiative	Forcing	g by E	Emissions a	nd Drive	rs		Level of Confidence
genic	Well-Mixed Greenhouse Gases	CO ₂	CO2		 					1.68	[1.33	to 2.03]	VH
		CH_4	CO_2 $H_2O^{str} O_3$ CH_4		 	 		+		0.97	[0.74	to 1.20]	н
		Halo- carbons	O ₃ CFCs HCFCs		1 1 1			1		0.18	[0.01	to 0.35]	н
		N ₂ O	N ₂ O		1 1 1	1	I	1		0.17	[0.13	to 0.21]	VH
	s	СО	CO ₂ CH ₄ O ₃		1 1 1		H+I	1		0.23	[0.16	to 0.30]	м
Anthropo	nd Aeroso	NMVOC	CO_2 CH_4 O_3		1 1 1		• 1	 		0.10	[0.05	to 0.15]	М
	hort Lived Gases al	NO _x	Nitrate CH ₄ O ₃		1	. 		1		-0.15 [-	-0.34	to 0.03]	М
		Aerosols and precursors (Mineral dust.	Mineral Dust Sulphate Nitrate Organic Carbon Black Carbon					1		-0.27 [-	-0.77	to 0.23]	н
	a	SO ₂ , NH ₃ , Organic Carbon nd Black Carbon)	Cloud Adjustments due to Aerosols	 			1	 		-0.55 [-1	1.33 to	o – 0.06]	L
			Albedo Change due to Land Use		1	. I+I	1	1		-0.15 [-().25 to	o –0.05]	М
Natural	Changes in Solar Irradiance				1			1		0.05	[0.00	to 0.10]	м
Total Anthropogenic RF relative to 1750						2011			H	2.29	[1.13	to 3.33]	н
						1980	1			1.25	[0.64	to 1.86]	н
						1950				0.57	[0.29	to 0.85]	М
				0	-1	0		1	2)	3	3	
	Radiative Forcing relative to 1750 (W m ⁻²)												

Estimates of temperature increase according to 3 emission pathways

(IPCC 2013)

Aumento médio de temperatura esperado para o Brasil 2071-2099 Mudança na precipitação esperada para o Brasil 2071-2100

Mudanças na chuva (%) em 2071-2100 relativo a 1961-90.

<u>Amazonia e</u> <u>Nordeste do Brasil</u> → deficiência de <u>chuvas</u>

<u>Sudeste da America</u> <u>do Sul → aumento</u> <u>nas chuvas</u>

Áreas continentais se aquecem mais que áreas oceânicas

INPE, (RCP 8.5)

Arid Index evolution from 1970 to 2016

Amazonia can be part of the solution: a unique region, with global impacts on the carbon balance and hydrological cycle

Amazonia is a key component of the Earth System

Amazon tipping point: 40% deforestation and 30% less precipitation Lovejoy and Nobre, 2018

Tropical Tree Cover Loss

Tropical forest loss: which country?

Deforestation in Amazonia 1977-2018 in km² per year

Biomass Burning...

Large scale aerosol distribution in Amazonia

- Severe health effects on the Amazonian population (about 20 million people)
- Climatic effects, with strong effects on cloud physics and radiation balance.
- Changes in carbon uptake and ecosystem functioning

Amazon is critical for water vapor transport over South America

What processes controls these fluxes?

Image NASA

Is the Amazonian hydrological cycle intensifying?

Maximum monthly, annual mean and minimum monthly mean Amazon river discharge at Óbidos and in green maximum and minimum daily mean river discharge.

Tropical Atlantic sea surface temperature from Extended reconstructed sea surface temperature.

Gloor et al. 2013

Amazon river discharge at Obidos

Port of Manaus maximum and minimum levels of water and amplitude

Jochen Schöngart, 2017

Dry season length is increasing in Amazonia

Annual time series of dry season length (DSL)

Annual time series of dry season END (DSE)

Dry season length has increased by **6.5±2.5** days/decade;

Fu et al. 2013 (PNAS)

Carbon cycling in Amazonia from 1985 to 2010

Net carbon flux: Today: ZERO

Tree mortality: significant INCREASE

Fraction of the remaining forest area 9 Earth System Models climate change projections

'TIPPING POINTS' OF FOREST-CLIMATE EQUILIBRIUM IN THE AMAZON

- Forest fire frequency (increasing)
 - Lengthening of dry season (increasing)
 - Increasing climate extremes

Adapted from Nobre et al., 2015, 2016

≈ 40% of total deforested area

Equilibrium states

Evidences for rapid climate changes

Global increase in temperature

Reduction in ice caps

Artic ice reduction

Climate extremes increase

Ocean acidification

How close to the edge do we dare to get?

The tipping point issue...

Tipping points of the Earth climate system

UNEP GEO-62019

Feedbacks: Arctic permafrost methane leakage to the atmosphere

Risks: Increase in the intensity and frequency of climate extremes

Figure 2.22: Trends in numbers of loss-relevant natural events

Source: Munich Re (2017)

It is already happening since the 80's

Food Security: Potential impacts on food production in a 3°C hotter world

FAO and World Economic Forum: Global Risks 2016

Solutions: Please we need engineering here!!!

More efficient use of energy

Greater use of low-carbon and no-carbon energy

- Many of these technologies exist today
- Nearly a quadrupling of zero- and low-carbon energy supply from renewable energy by 2050

Improved carbon sinks

- Reduced deforestation and improved forest management and planting of new forests
- Bio-energy with carbon capture and storage

Lifestyle and behavioural changes

AR5

Biofuels?

Energy production

Emissions pathways to limit temperature increase to 1.5 degrees with Short Lived Climate Forcers

Non-CO₂ emissions relative to 2010

Emissions of non-CO₂ forcers are also reduced

Global total net CO2 emissions

Faster immediate CO2 emission reductions (-5% per year, at 2020)

Maximum temperature rise is determined by cumulative net CO2 emissions and net non-CO2 radiative forcing due to methane, nitrous oxide, aerosols and other anthropogenic forcing agents.

Source: IPCC Special Report on Global Warming of 1.5 °C

Geoengineering is defined as "deliberate large-scale manipulation of the planetary environment to counteract anthropogenic climate change."

Shepherd, J. G. S. et al., 2009: *Geoengineering the climate: Science, governance and uncertainty*, RS Policy Document 10/09, (London: The Royal Society).

Very extensive literature...

IGBP Ambio task force

Author's personal copy

AMBIO 2012, 41:350-369 DOI 10.1007/s13280-012-0258-5

REVIEW PAPER

Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan

US National Academy of Sciences

Lynn M. Russell, Philip J. Rasch, Georgina M. Mace, Robert B. Jackson, John Shepherd, Peter Liss, Margaret Leinen, David Schimel, Naomi E. Vaughan, Anthony C. Janetos, Philip W. Boyd, Richard J. Norby, Ken Caldeira, Joonas Merikanto, Paulo Artaxo, Jerry Melillo, M. Granger Morgan

of Rutional Academy of Sciences

Developing countries must lead on solar geoengineering research

The nations that are most vulnerable to climate change must drive discussions of modelling, ethics and governance, argue A. Atiq Rahman and colleagues.

UK Royal Society

Geoengineering the climate

Science, governance and uncertainty September 2009

World Economic Forum: The Global Risks Report 2019

Top 5 Global Risks in Terms of Likelihood

WØRLD

ECONOMIC FORUM

Top 5 Global Risks in <u>Terms of Impacts</u>

2017	017 2018 2019			2017	2018	2019		
Extreme weather events	Extreme weather events	Extreme weather events		Weapons of mass destruction	Weapons of mass destruction	Weapons of mass destruction		
Large-scale involuntary migration	Natural disasters	Failure of climate-change mitigation and adaptation		Extreme weather events	Extreme weather events	Failure of climate-change mitigation and adaptation		
Major natural disasters	Cyber-attacks	Natural disasters		Water crises	Natural disasters	Extreme weather events		
Large-scale terrorist attacks	Data fraud or theft	Data fraud or theft		Major natural disasters	Failure of climate-change mitigation and adaptation	Water crises		
Massive incident of data fraud/theft	Failure of climate-change mitigation and adaptation	Cyber-attacks		Failure of climate-change mitigation and adaptation	Water crises	Natural disasters		
		9. X			and the second second			
Economic Environmental Geopolitical Societal Technological								

P.S.: These are issues raised by economists, not scientists or NGOs...

OBJETIVOS **DE DESENVOLVIMENTO N:** SUSTENTÁVEI 5 IGUALDADE DE GÊNERO 6 AGUA POTÁVE Ø Ų 10 REDUÇÃO DAS DESIGUALDADE INDÚSTRIA, INOVA E INFRAESTRUTUR (0) 14 AGUA Est 17 PARCERIASE DE IMPLEMEN 8 Mitigation options and sustainable development using SDGs

Potential positive effects (synergies) Negative effects (trade-offs)

UN 17 sustainable goals to transform our world

IPCC SR1.5, 2018

Science basically have done his job...

Now it is the time of engineering and policies

Paris Agreement: IF all iNDC fulfilled: warming of about 2.7-3.0 degrees in 2050

http://climateactiontracker.org

Brazilian iNDC						
Emissions reductions in 2025	Reduction in 2030					
37%	43%					

A few of the Brazilian iNDC commitments (*Reference point:* 2005):

- ZERO illegal deforestation at 2030 and compensation of emissions from legal deforestation at 2030;
- Restore and reforest 12 millions hectares of forests till 2030, for multiple uses;
- Restoration of 15 millions of hectares in degraded pastures till 2030
- Participation of 45% renewable energy in the energy system at 2030

Ethical issues

Encyclical Letter LAUDATO SI' of Pope Francis (2015)

I urgently appeal for a new dialogue about how we are shaping the future of our planet. We need a conversation which includes everyone, since the environmental challenge we are undergoing, and its human roots, concern and affect us all.

Those who contribute the least greenhouse gases will be most impacted by climate change

Global inequality is a big issue: consumption in one week...

The role of Science versus economy, society, governance, etc...

How to build a safe space to our humanity? Combining the Earth System with societal needs

Steffen et al. 2015, Science A Safe and Just Space for Humanity Oxfam Discussion Paper

We need solid engineering, science and public policies to build this space

Transformations to Achieve the Sustainable Development Goals

Report prepared by The World in 2050 initiative

SDGs and the six transformations required for The World in 2050

Digital revolution

Artificial intelligence, big data, biotech, nanotech, autonomous systems

Smart cities

Decent housing, mobility, sustainable infrastructure, pollution

Food, biosphere, & water

Sustainable intensification, biodiversity, forests, oceans, healthy diets, nutrients

Role of science and engineering: Reaching the SDG must be done together with adaptation and reducing emissions aiming at mitigating climate change

Thanks for the attention!!!

