Environmental health perspectives on coal pollution: a view from different toxicological models

Prof. Karina Caballero Gallardo. Ph.D. Environmental and Computational Chemistry Group University of Cartagena, Cartagena, Colombia

TVERSIDAD

CARTAGEN

We are Concerned about Environmental Health

<u>Chemosphere.</u> 2015. 138: 837-846.

Chemical and toxicological characterization of sediments along a Colombian shoreline impacted by coal export terminals.

<u>Caballero-Gallardo K</u>¹, <u>Guerrero-Castilla A</u>¹, <u>Johnson-Restrepo B</u>², <u>de la Rosa</u> J³, <u>Olivero-Verbel J</u>⁴.

Toxicol Appl Pharmacol. 2016. 294: 11-20.

Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health.

<u>Caballero-Gallardo K¹, Olivero-Verbel J².</u>

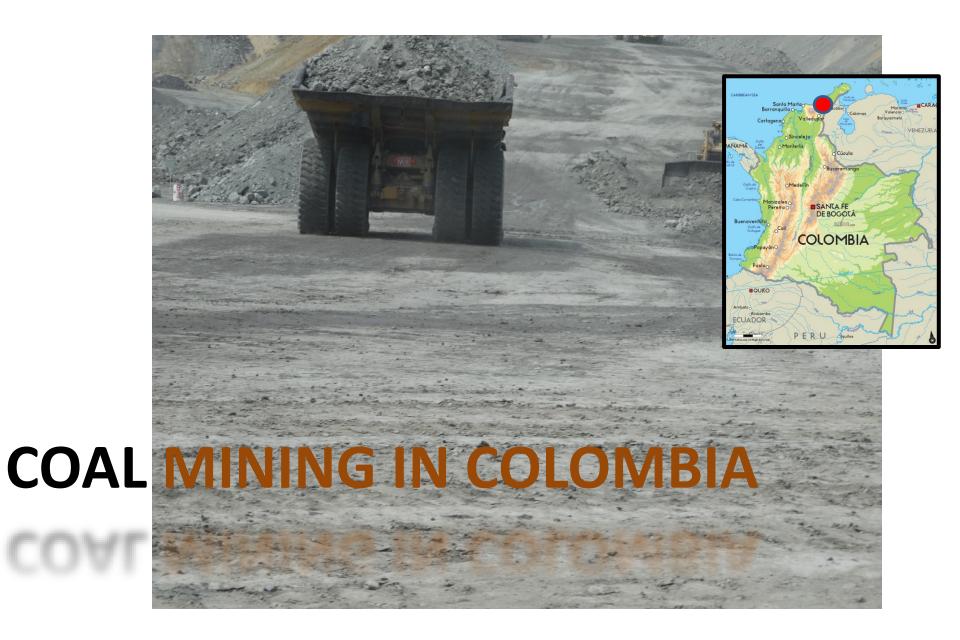
Metallomics. 2018. 10(3): 463-473.

Embryonic exposure to an aqueous coal dust extract results in gene expression alterations associated with the development and function of connective tissue and the hematological system, immunological and inflammatory disease, and cancer in zebrafish.

<u>Caballero-Gallardo K</u>¹, <u>Wirbisky-Hershberger SE</u>², <u>Olivero-Verbel J</u>¹, <u>de la</u> <u>Rosa J</u>³, <u>Freeman JL</u>².

Submitted to Environmental Research

Transgenerational effects of coal dust on *Tribolium castaneum*, Herbst <u>Alcala-Orozco, M., Caballero-Gallardo K</u>., <u>Olivero-Verbel J</u>



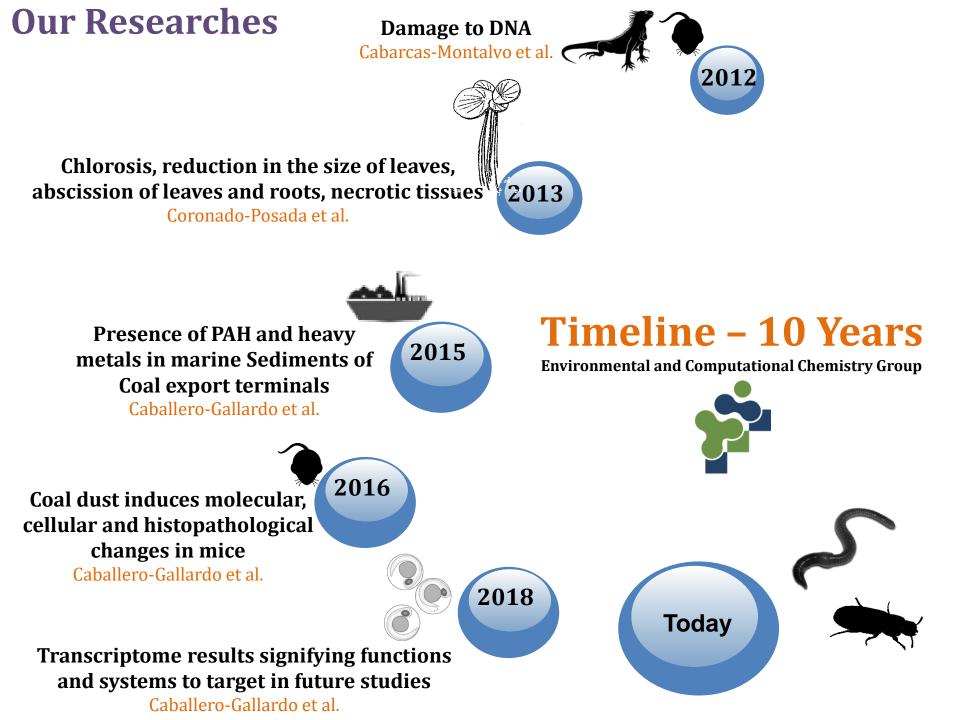
Oil Refinery... Santander

Oil Refinery... Bolivar

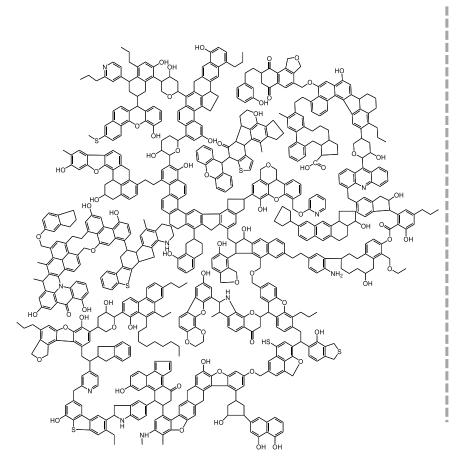
Gold mining... Amazon

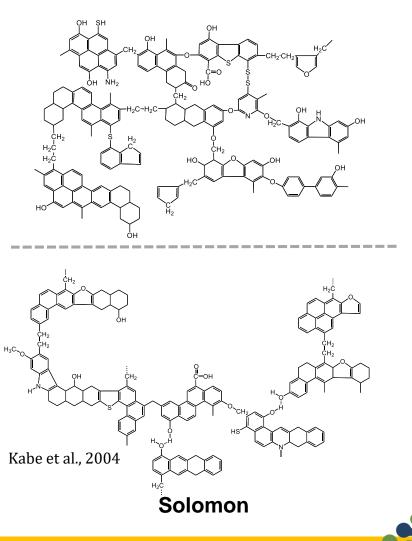
Gold mining... Choco

Coal mining... Guajira


Coal mining... Cesar

Gold mining... Bolivar




Coal

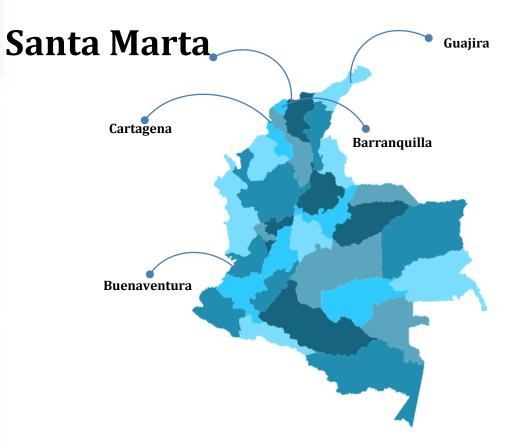
Coal molecular structure model

Shinn

Wiser

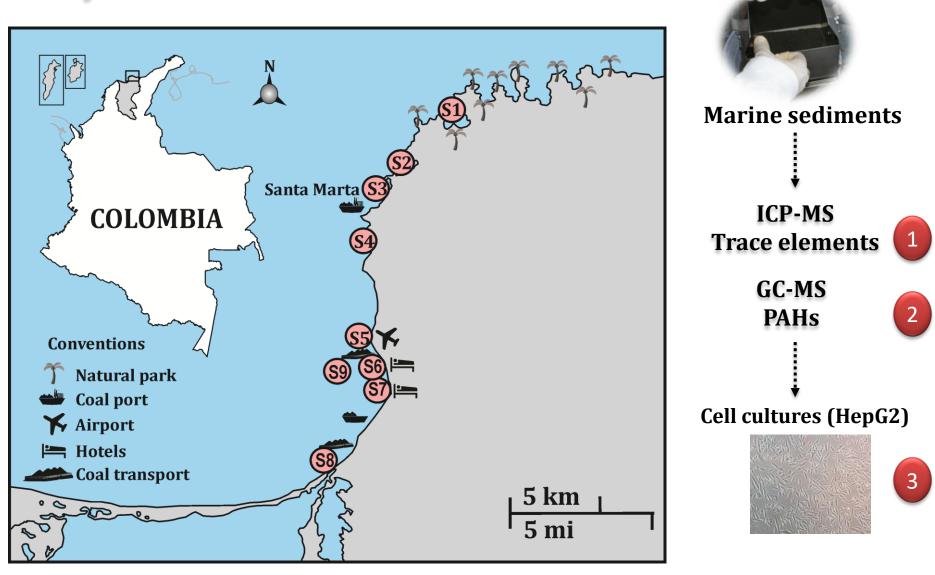
The phases of coal mining

Coal dust particles are formed when two pieces of mineral crush or get in close contact



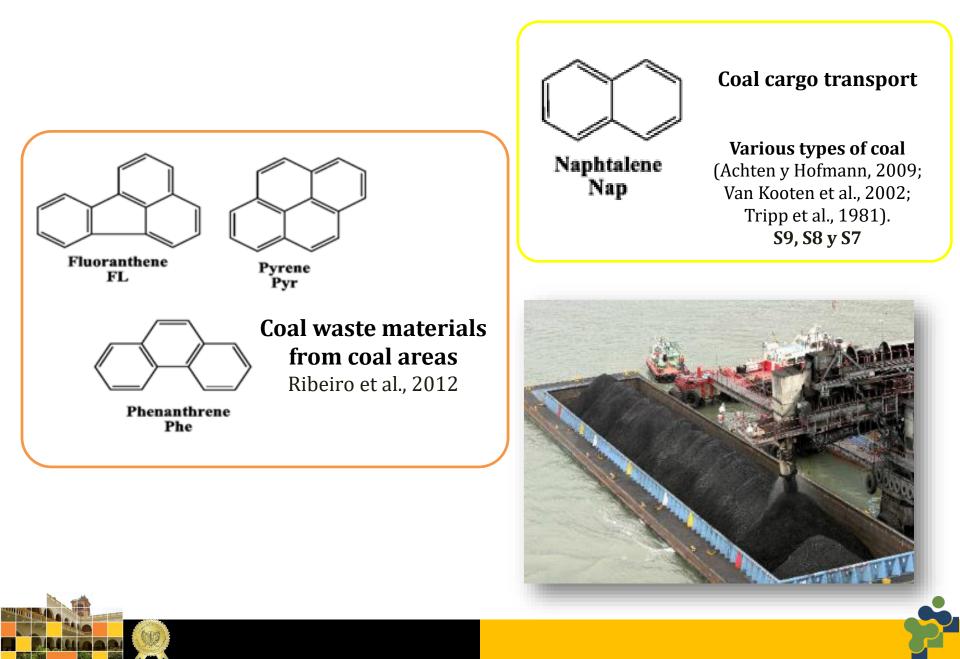
Dust particles

Coal Port in Santa Marta, Colombia


Colombian Ports for Coal

Caballero-Gallardo et al., 2015

Study area



Station/index	name	Cd	Cr	Cu	Pb	Zn	As
S1		0.1	30.5	13.3	6.3	46.8	2.7
S2		0.1	141.2	22.0	6.6	59.2	3.1
S3		0.2	48.8	9.77	11.0	69.7	3.2
S4		0.1	44.9	4.16	6.6	54.9	3.0
S5		0.1	39.7	29.9	7.1	53.7	2.5
S6		0.1	38.8	3.5	6.5	48.9	2.8
S7		0.1	33.7	4.0	5.7	58.3	2.4
S8		0.2	64.9	21.4	10.0	89.3	7.4
S9		0.1	67.1	22.1	12.2	106.0	11.2
Marine sediment	Percentile 0–20	0.6	2.0	3.0	3.3	15.4	7.0
pollution index	Percentile 21–40	1.0	5.0	6.0	5.0	34.0	8.0
(MSPI)	Percentile 41–60	1.5	9.2	12.0	8.0	57.0	10.2
Shin y Lam (2001)	Percentile 61–80	2.9	19.6	30.6	18.2	101.6	21.0
	Percentile 81–100	8.0	63.0	191.0	69.0	507.0	58.0

Trace element concentrations (μ g/g, dry weight) in sediments from Santa Marta shoreline, Colombia, compared to marine Sediment Quality Standards

The sediment quality based on MSPI, as follows: MSPI 0-20: sediment in excellent condition; MSPI 21-40: sediment in good condition; MSPI 41-60: sediment in average condition; MSPI 61-80: sediment in poor condition; MSPI 81-100: sediment in bad condition.

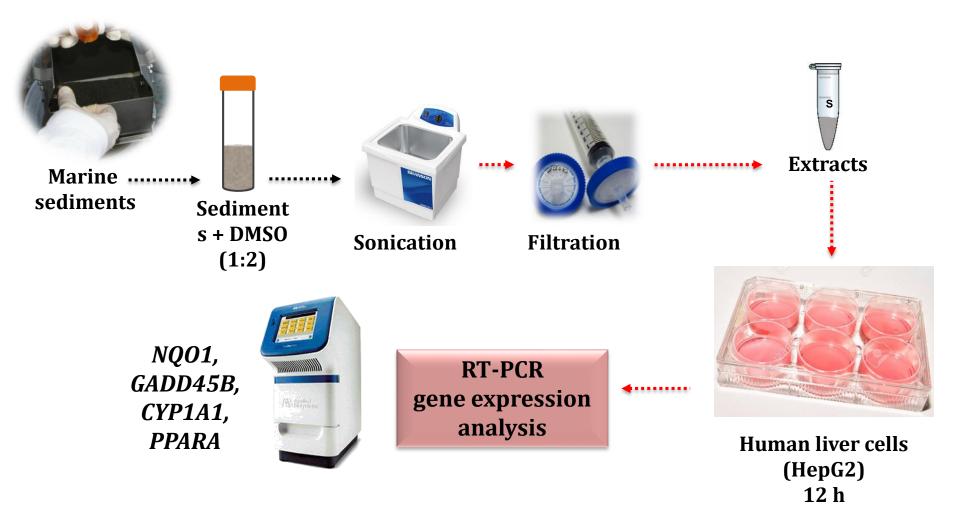
PAHs in marine sediments

Coal pollution in beaches

Touristic places

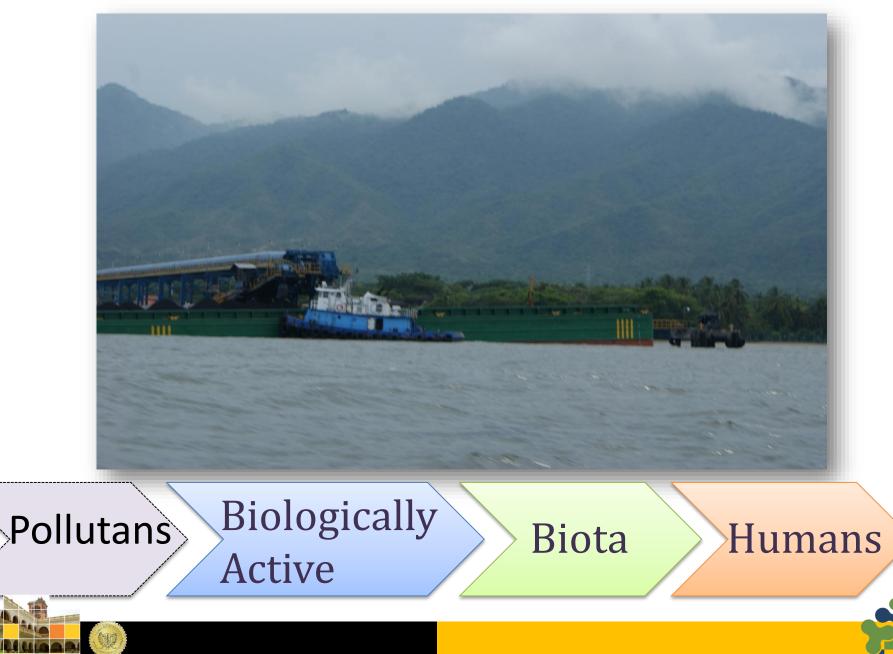
Coal cargo transport

Metals PAHs


Are those chemicals biologically active?

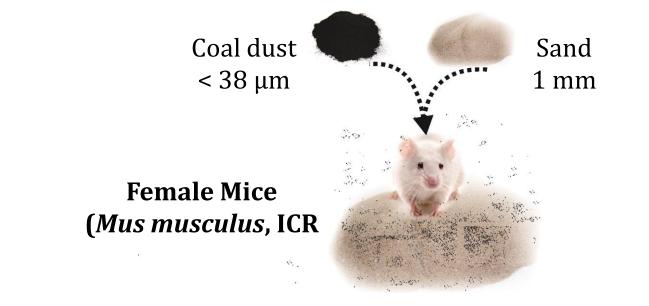
Do they represent a problem for the biota or maybe the humans?

Biological experiments with sediment extracts

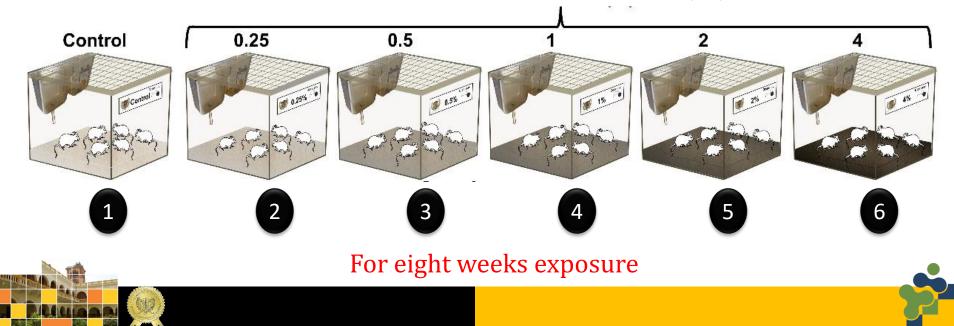


Relative quantification of mRNA of *CYP1A1* (Cytochrome P450, family 1, subfamily A, polypeptide 1), *NQO1* (NAD(P)H dehydrogenase quinone 1), *GADD45B* (DNA damageinduciblegene 45 b) and *PPARA* (Peroxisome proliferator-activated receptor alpha) in HepG2 Cells treated with 1% marine sediment extracts

	RELATIVE QUANTIFICATION OF mRNA							
	CYP1A1		NQ	01	GADD45B		PPARA	
SAMPLE	HMBS	B2M	HMBS	B2M	HMBS	B2M	HMBS	B2M
C-	1.0 ± 0.2	1.0 ± 0.2	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	1.0 ±0.1	1.0 ± 0.2	1.0 ± 0.2
CE (500 ppm)	176.4 ± 23.0*	189.9 ± 31.8*	1.9 ± 0.0	2.6 ± 0.6	6.8 ± 1.7*	7.3 ± 1.8*	1.1 ± 0.3	1.2 ± 0.4
CE (1000 ppm)	307.2 ± 40.5*	231.9 ± 73.0*	3.9 ± 0.4*	$4.0 \pm 0.1^{*}$	30.2 ± 9.5*	19.0 ± 4.0*	1.6 ± 0.9	0.8 ± 0.0
S1	3.6 ± 0.4	2.7 ± 0.1	1.8 ± 0.4	1.3 ± 0.1	1.4 ± 0.3	1.0 ± 0.0	0.6 ± 0.1	0.5 ± 0.0
S 2	2.6 ± 0.9	1.6 ± 0.2	1.2 ± 0.1	1.2 ± 0.1	1.3 ± 0.2	0.9 ± 0.2	0.7 ± 0.2	0.4 ± 0.1
\$3	61.5 ± 13.1*	36.6 ± 2.4*	2.1 ± 0.2	1.7 ± 0.0	1.4 ± 0.2	0.8 ± 0.1	0.6 ± 0.1	0.4 ± 0.1
S4	1.2 ± 0.2	1.7 ± 0.3	1.0 ± 0.3	1.2 ± 0.1	0.7 ± 0.3	0.8 ± 0.3	0.5 ± 0.1	0.8 ± 0.2
S 5	0.5 ± 0.1	1.0 ± 0.1	1.4 ± 0.1	2.7 ± 0.1	0.1 ± 0.0	0.3 ± 0.0	0.8 ± 0.1	1.6 ± 0.1
S6	1.1 ± 0.4	1.5 ± 0.5	3.3 ± 0.9*	$3.4 \pm 0.4^{*}$	0.1 ± 0.0	0.1 ± 0.0	1.4 ± 0.2	1.8 ± 0.9
S 7	1.1 ± 0.3	1.3 ± 0.4	4.3 ± 1.3*	$3.0 \pm 0.4^{*}$	0.1 ± 0.0	0.2 ± 0.0	0.9 ± 0.1	1.6 ± 0.2
S8	2.2 ± 0.2	3.3 ± 0.7	2.4 ±0.1*	$3.5 \pm 0.5^{*}$	0.1 ± 0.0	0.2 ± 0.0	0.8 ± 0.1	1.2 ± 0.3
S 9	11.9 ± 4.5*	11.4 ± 3.2*	3.7 ±0.9*	3.6 ±0.1*	0.2 ± 0.0	0.2 ± 0.1	1.0 ± 0.1	1.1 ± 0.2


Gene expression was normalized with HMBS and B2M. C-, Negative control; CE, Coal Extract (Positive control); S1-S9, marine sediment extracts.* Significant difference (P < 0.05) compared to the Negative control.

Sediments from coal ports



Is it possible that these effects also occur in the soil, when biota organisms have direct contact with coal dust particles?

Model of coal dust exposure in sand

Coal dust concentration (%)

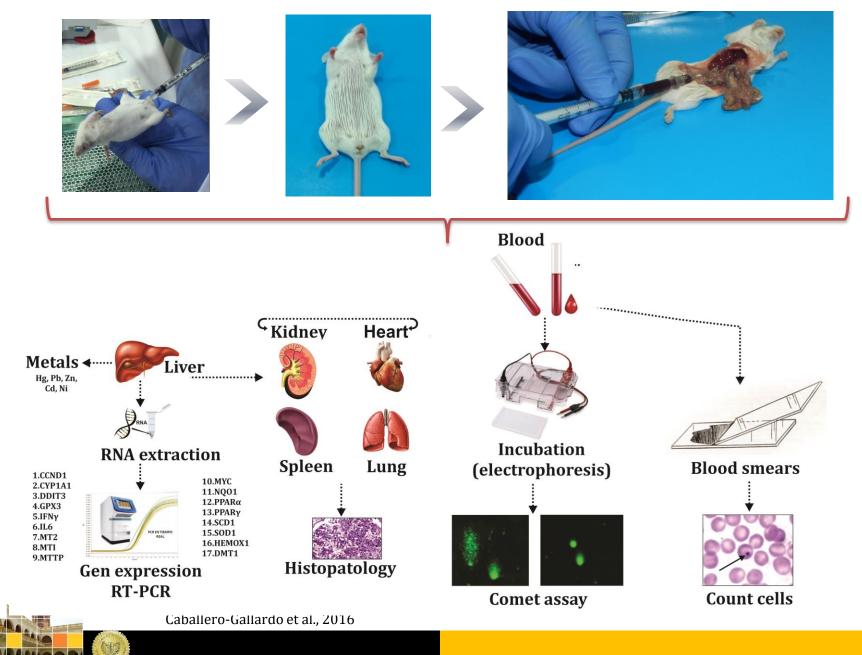
Coal dust <38 µm

Coal sample (Cesar, Colombia)

Crushed with a pestle and mortar



Sieved (20/40/60/100/400)



Coal dust <38 μm

The routes of exposure

Blood and tissue collection

Metals concentrations ($\mu g/g$) in hepatic tissue

Metal	n	Control	2 %	4 %
Hg	6	<dl< td=""><td>< 0.0004</td><td>< 0.0004</td></dl<>	< 0.0004	< 0.0004
Pb	5	<dl< td=""><td><0.038</td><td>< 0.038</td></dl<>	<0.038	< 0.038
Ni	6	0.07±0.003	0.07 ± 0.001	$0.09 \pm 0.001^*$
Cd	6	0.07 ± 0.001	0.06±0.001	0.07±0.002
Zn	6	78.92±0.10	80.22±0.20*	87.74±0.59*

*. Significant difference (*P*<0.05) when compared to non-exposed group (sand without coal dust).

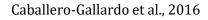
Bats

79.67±11.8 μg/g Zocche et al. (2010) Brazil

Amphibians

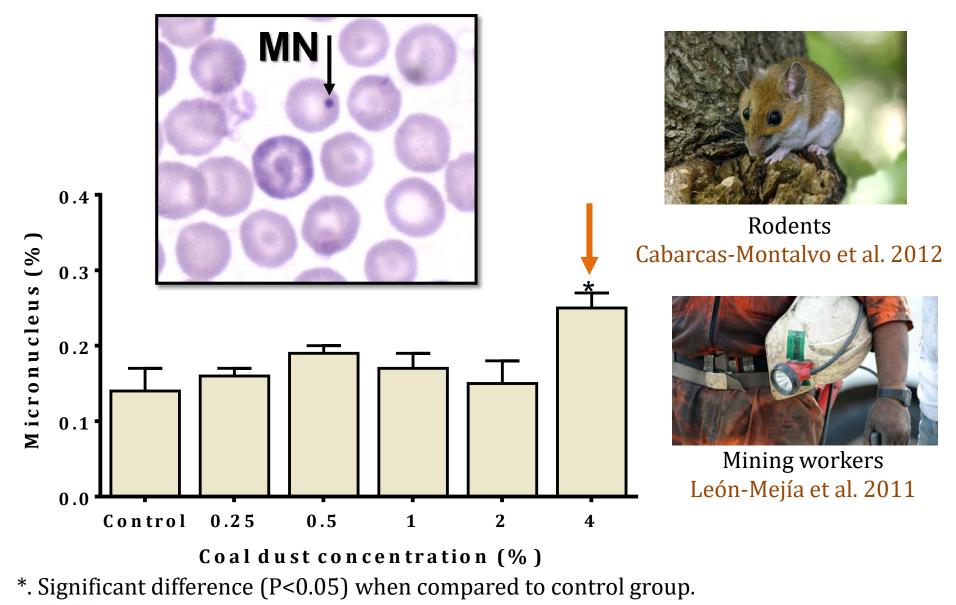
 $87.4 \pm 6.4 \ \mu g/g$ Zocche et al. (2013) Brazil

Mice

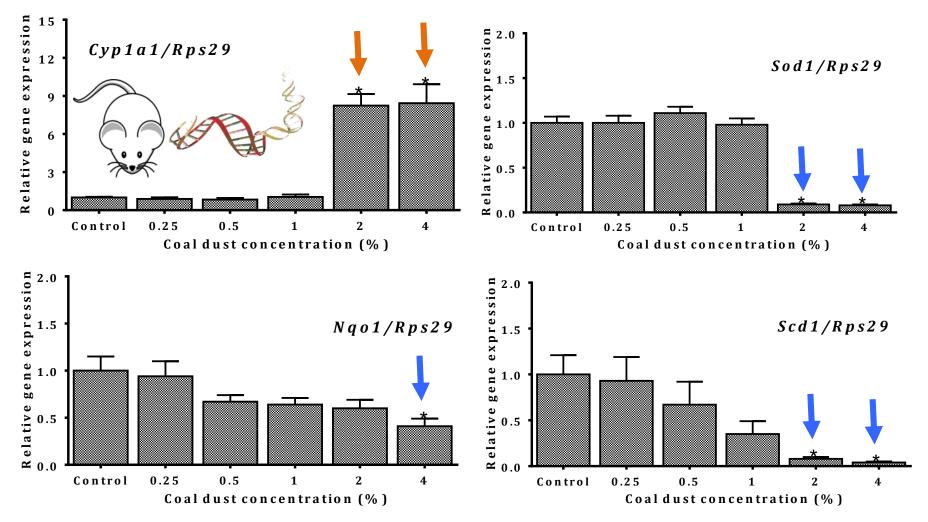

16.73 ± 4.73 μg/g Guerero-Castilla et al. (2014) Colombia

Comet assay

Normal cell Level I	<u>L</u>	evel II Le	vel III Leve	<u>l IV</u>
Group (Coal dust % in sand)	n	GDI± SD	F ₂₊₃₊₄ ± SD	
0	6	0.96±1.02	0.09±0.16	
0.25	6	2.72±4.29	0.07 ± 0.16	
0.5	6	6.27±6.80	0.53±1.30	
1	5	6.90±0.51	0.63±0.81	
2	6	12.98±3.45*	2.50±0.11*	
4	6	16.87±5.13*	5.38±1.00*	

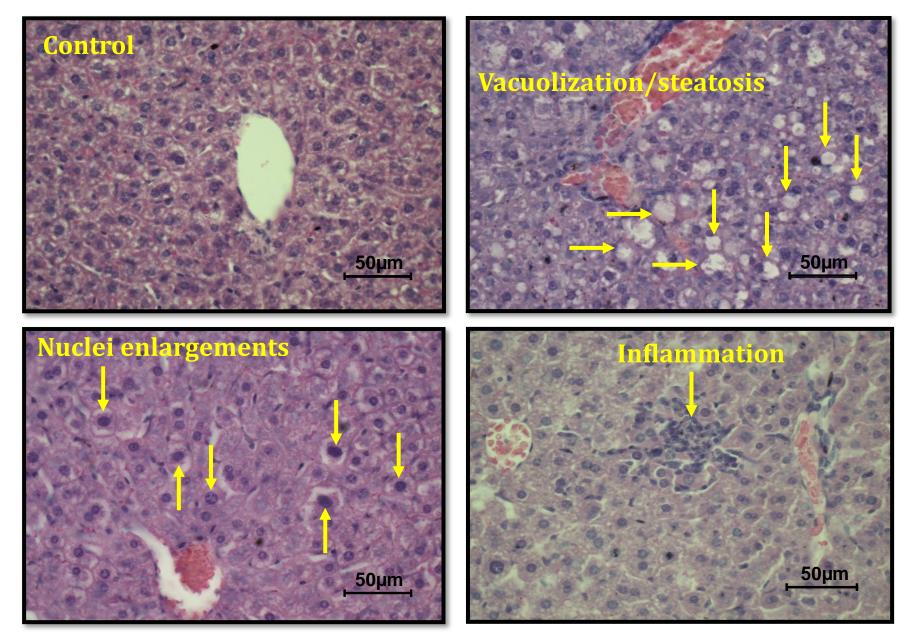

*. Significant differences (*p*<0.05) compared to control group (sand without coal dust)

Organisms monitoring can be used to predict possible genotoxic effects on humans



Micronucleus in blood smears

Caballero-Gallardo et al., 2016


Hepatic gene expression profiles

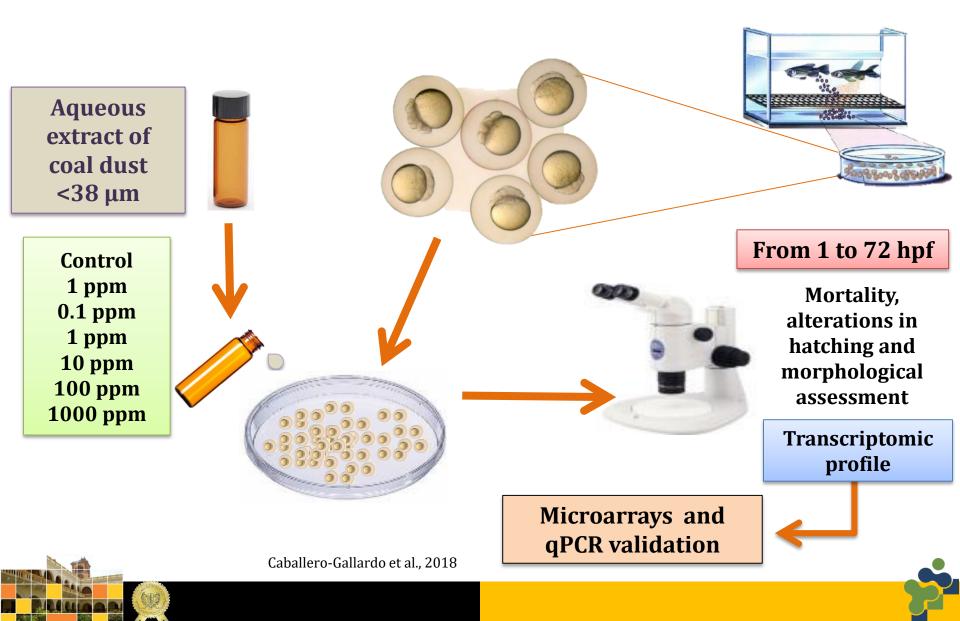
*Significant difference (p<0.05) when compared to control. *Rps29*: ribosomal protein S29. *Cyp1a1*: Cytochrome P450, family 1, subfamily A, polypeptide 1. *Sod1*: Superoxide dismutase [Cu-Zn]. *Nqo1*: NAD(P)H dehydrogenase quinone 1. *Scd1*: Stearoyl-CoA desaturase.

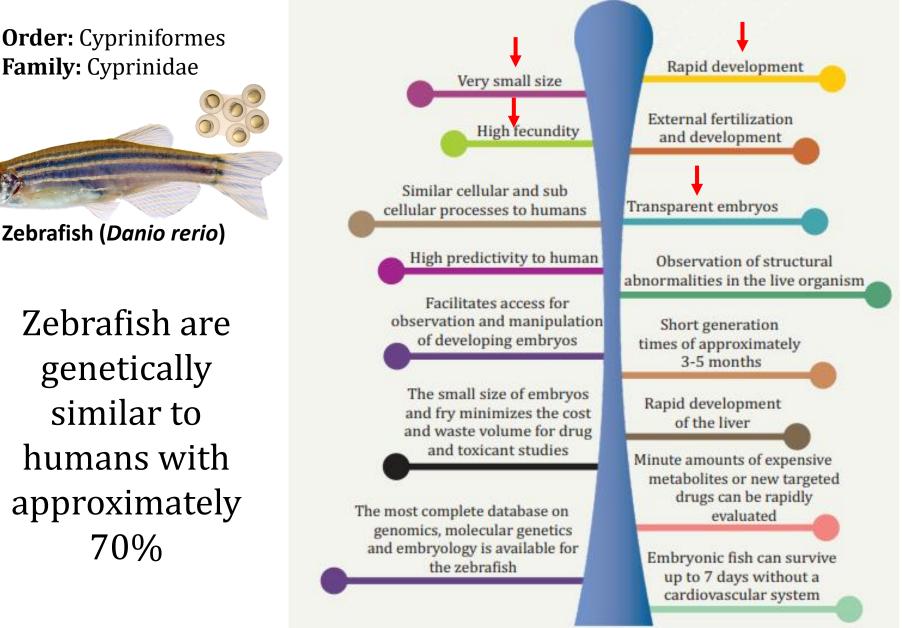
Caballero-Gallardo et al., 2016

Morphological alterations in the liver tissue of mice after 8 weeks of exposure to sand contaminated with coal dust. Stain H&E (40×)

Mice exposed to coal dust under laboratory conditions, showed several toxicological effects at the molecular, cellular and tissue level, similar to those found in some organisms living near coal mining areas

Caballero-Gallardo et al., 2016



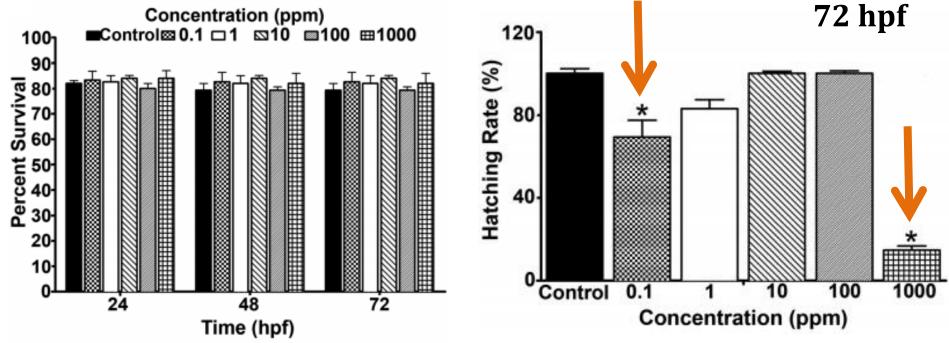


Toxic effects of an aqueous extract of coal dust in the embryonic development on Zebrafish (*Danio rerio*)

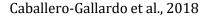
Zebrafish: Advantages as a toxicological model

Howe et al., 2013; Yu et al., 2008

Trace element concentrations (ppb) in the aqueous coal dust extract, as well as Milli-Q water and coal dust (<38 μm) used for extraction


	Concentration (ppb; $\mu g L^{-1}$)			
Elements	Aqueous coal dust extract	Milli-Q water	⊿ concentration	$\begin{array}{c} Coal \; dust \\ < 38 \; \mu m^{27} \end{array}$
Sr ^d	600 ± 3^{a}	0	600	34 910
Zn ^c	88 ± 0	3	85	8990
Ba ^d	67 ± 0	1	66	57 200
As ^b	20 ± 1	0	20	4380
Cu ^c	18 ± 2	1	17	4260
Seb	12 ± 0	0	12	1280
Li ^d	9.4 ± 0.0	0.0	9.4	750
Ni ^c	4.4 ± 0.1	0.0	4.4	870
Sb^d	2.5 ± 1.6	0.0	2.5	90
Rb	2.4 ± 0.0	0.1	2.3	160
Co ^d	2.2 ± 0.0	0.0	2.2	550
Cr ^c	1.3 ± 0.0	0.8	0.5	1070
Mo ^b	0.9 ± 0.0	0.0	0.9	900
Tl^{f}	0.7 ± 0.0	0.0	0.7	190
V ^c	0.5 ± 0.0	0.2	0.3	1170
Sc	0.5 ± 0.0	0.1	0.4	10
Pb ^b	0.4 ± 0.3	0.0	0.4	710
Bi	0.6 ± 0.2	0.0	0.6	20
Cs	0.2 ± 0.0	0.0	0.2	10
Be	0.2 ± 0.1	0.0	0.2	50
Zr	0.1 ± 0.0	0.0	0.1	770
Ge^d	0.1 ± 0.0	0.0	0.1	80
U ^e	0.1 ± 0.0	0.0	0.1	40
Cd ^b	0.1 ± 0.0	0.0	0.1	40
Sn ^f	0.1 ± 0.0	0.0	0.1	110
Ga	0.1 ± 0.0	0.0	0.1	290

57% of the trace elements identified in the coal dust were found in the leachate.


Caballero-Gallardo et al., 2018

Percent survival and alterations in hatching of zebrafish exposed to aqueous coal extract from 1 to 72 hpf

*. Significant difference (p<0.05) when compared to control group.

Transcriptomic results of zebrafish exposed to aqueous coal extract showed alterations in 77, 61, and 1376 genes differentially expressed in all groups evaluated (1, 10, and 100 ppm)

Gene ontology analysis identified pathways related to:

19 genes

Number Gene symbol		Biological process	Direction of change in expression
1	AIFM3	Apoptosis	Down
2	ARHGEF37	GTPase Activity	Up
3	BC051665	Proteolysis	Up
4	BTG4	Cell Cycle	Down
5	DZIP1L	Cilium Assembly	Down
6	FAM19A4	Membrane Potential	Up
7	FOS	Cellular Processes	Up
8	FOSB	Cellular Processes	Up
9	HPX	Iron Ion Homeostasis	Down
10	JDP2	Transcription	Down
11	МАРКЗ	MAPK Signaling	Down
12	MEF2D	Cell Signaling/Transcription	Down
13	NPAS4	Cellular Response to Stimuli/Transcription	Up
14	PTEN	Cellular Function	Down
15	PTPRC	Cellular Processes	Up
16	SOCS3	Cytokine Signaling	Up
17	SPRY1	Neurotrophin/TRK Signaling	Down
18	TGM1	Cellular Processes	Down
19	TMEM216	Cellular Organization	Up

Gene enrichment table of physiological system development and function

for 72 hpf zebrafish larvae in all three groups

	Physiological system development and function	<i>p</i> -Value ^{<i>a</i>}	Number of genes ^b
	Hematological system development and function	$7.14 imes 10^{-3}$ - $1.06 imes 10^{-6}$	7
	Quantity of T lymphocytes	1.06×10^{-6}	7
	Development of lymphocytes	$3.03 imes 10^{-4}$	5
	Differentiation of blood cells	$1.64 imes10^{-3}$	5
	Proliferation of T lymphocytes	1.99×10^{-3}	6
	Tissue morphology	$6.25 imes 10^{-3}$ - $1.06 imes 10^{-6}$	8
	Quantity of T lymphocytes	1.06×10^{-6}	7
5	Quantity of B lymphocytes	3.83×10^{-4}	4
	Quantity of oligodendrocytes	$4.43 imes 10^{-4}$	2
	Tissue development	$7.14 imes 10^{-3} extrm{3}{-3.09} imes 10^{-6}$	10
	Proliferation of smooth muscle cells	$1.82 imes 10^{-4}$	4
	Proliferation of fibroblasts	$2.49 imes10^{-5}$	5
	Differentiation of bone cells	3.09×10^{-6}	6
	Growth of connective tissue	5.83×10^{-5}	6
	Connective tissue development and function	$7.14 imes 10^{-3}$ - $4.41 imes 10^{-6}$	10
	Proliferation of fibroblast cells	$2.49 imes10^{-5}$	5
	Formation of osteoclasts	4.21×10^{-6}	4
	Differentiation of osteoclasts	3.34×10^{-5}	4
	Embryonic development	$7.14 \times 10^{-3} 4.41 \times 10^{-6}$	10
	Development of body trunk	$1.23 imes10^{-4}$	7
	Formation of osteoclasts	$4.21 imes10^{-6}$	4
	Development of lymphatic system	$4.99 imes10^{-4}$	4
	Development of abdomen	3.55×10^{-3}	4
		Caballero-Gallardo et al.	, 2018

Gene alterations associated with

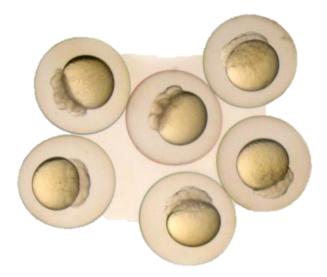
Gene enrichment table of diseases and disorders in 72 hpf zebrafish larvae in all three aqueous coal dust treatments

Diseases and disorders	<i>p</i> -Value ^{<i>a</i>}	Number of genes ^t
Connective tissue disorders	1.34×10^{-3} - 1.00×10^{-6}	7
Arthritis	$5.50 imes 10^{-4}$	6
Rheumatoid arthritis	9.23×10^{-4}	5
Osteoporosis	$1.34 imes 10^{-4}$	2
_		
Immunological disease	7.14×10^{-3} -1.00×10^{-6}	7
Rheumatoid arthritis	9.23×10^{-4}	5
Splenomegaly	1.15×10^{-6}	4
Thymic lymphoma	1.34×10^{-3}	2
Inflammatory disease	$7.14 imes 10^{-3}$ – $1.00 imes 10^{-6}$	8
Chronic inflammatory disorder	5.55×10^{-4}	6
Airway hyperresponsiveness	1.33×10^{-4}	3
Inflammation of the liver	2.93×10^{-3}	3
Skeletal and muscular disorders		8
Arthritis	5.50×10^{-4}	6
Rheumatoid arthritis	9.23×10^{-4}	5
Arthritis of the ankle joint	1.59×10^{-5}	2
Cancer	7.14×10^{-3} -5.38 $\times 10^{-6}$	10
Hyperplasia	2.53×10^{-4}	5
Prostate cancer and tumors	9.23×10^{-4}	5
Bladder cancer	2.32×10^{-3}	4
Development of tumor	3.94×10^{-4}	4

Altered genes were associated with diseases and disorders

a Derived from the likelihood of observing the degree of enrichment in a gene set of a given size by chance alone. b Classified as being differentially expressed that relate to the specified function category; a gene may be present in more than one category.

Caballero-Gallardo et al., 2018


Gene enrichment table of molecular and cellular function in 72 hpf

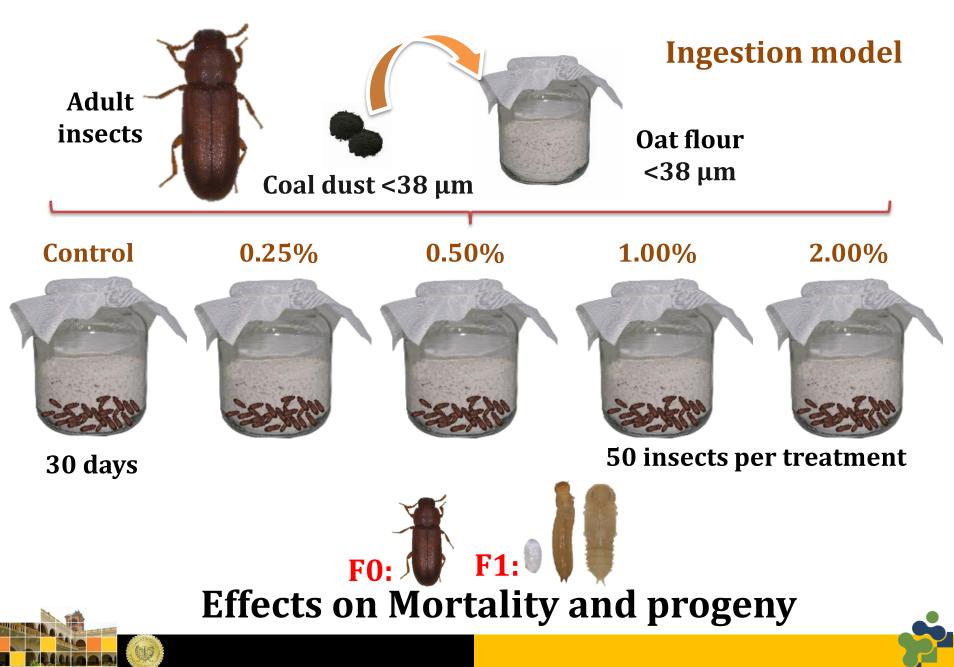
zebrafish larvae in all three aqueous coal dust treatments

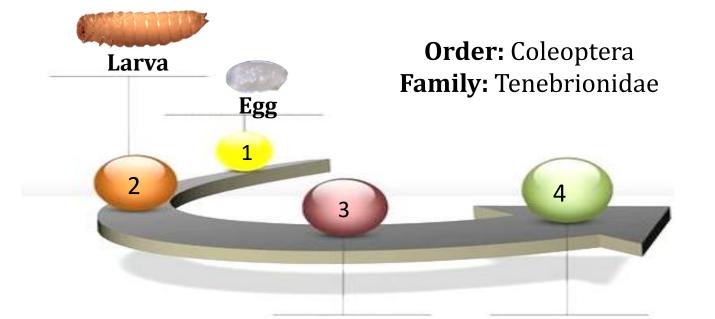
Analysis of the 19 genes altered in all three groups showed that they were associated with:

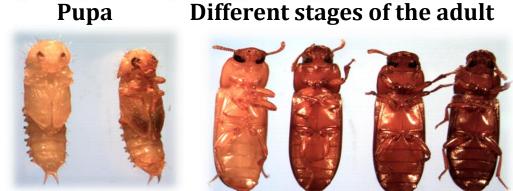
	Molecular and cellular function	<i>p</i> -Value ^{<i>a</i>}	Number of genes ^b
[Cellular development	7.14×10^{-3} - 3.09×10^{-6}	13
	Differentiation of cells	8.15×10^{-6}	11
	Differentiation of connective tissue	8.23×10^{-6}	7
	Differentiation of bone cells	3.09×10^{-6}	6
	Differentiation of blood cells	1.64×10^{-3}	5
I	Cellular growth and proliferation	$7.14 \times 10^{-3} - 4.21 \times 10^{-6}$	11
	Proliferation of cells	1.21×10^{-3}	11
	Formation of cells	6.95×10^{-4}	6
	Proliferation of fibroblasts	2.49×10^{-5}	5
	Cell cycle	6.25×10^{-3} -7.57 × 10 ⁻⁶	7
	Cell cycle progression	1.07×10^{-4}	7
	Mitosis	1.85×10^{-3}	4
	Senescence of cells	1.55×10^{-3}	3
	Cell death and survival	7.14×10^{-3} -7.57 × 10 ⁻⁶	12
	Necrosis	2.72×10^{-4}	10
	Apoptosis	3.51×10^{-4}	10
	Cell survival	8.91×10^{-5}	8
	Cell viability	2.68×10^{-3}	6
	Gene expression	5.36×10^{-3} -1.52 × 10 ⁻⁵	9
	Transcription of RNA	7.80×10^{-4}	8
	Binding of DNA	1.52×10^{-5}	6
	Transactivation of RNA	2.85×10^{-4}	5

Margare In a

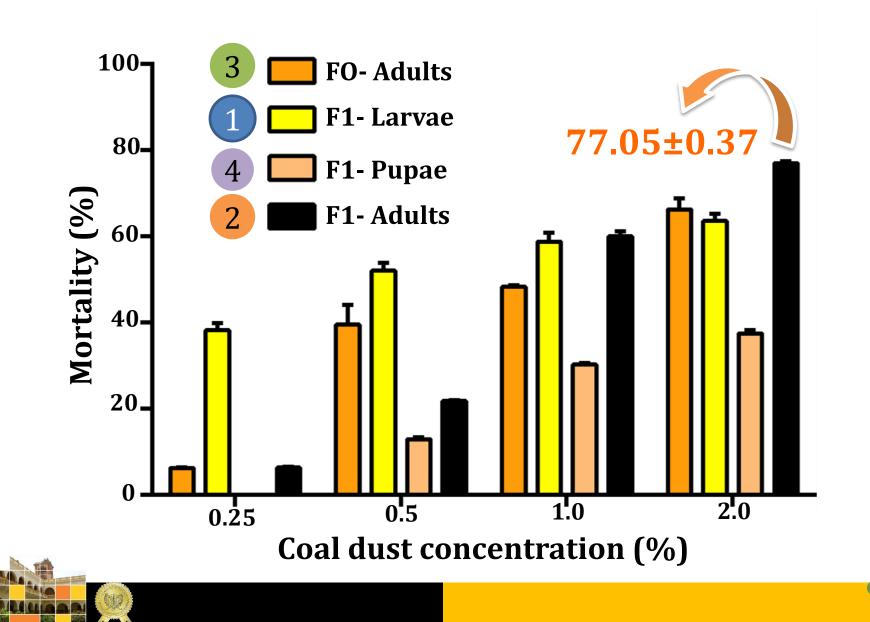
This was the first study to characterize gene expression changes in response to an aqueous coal dust extract

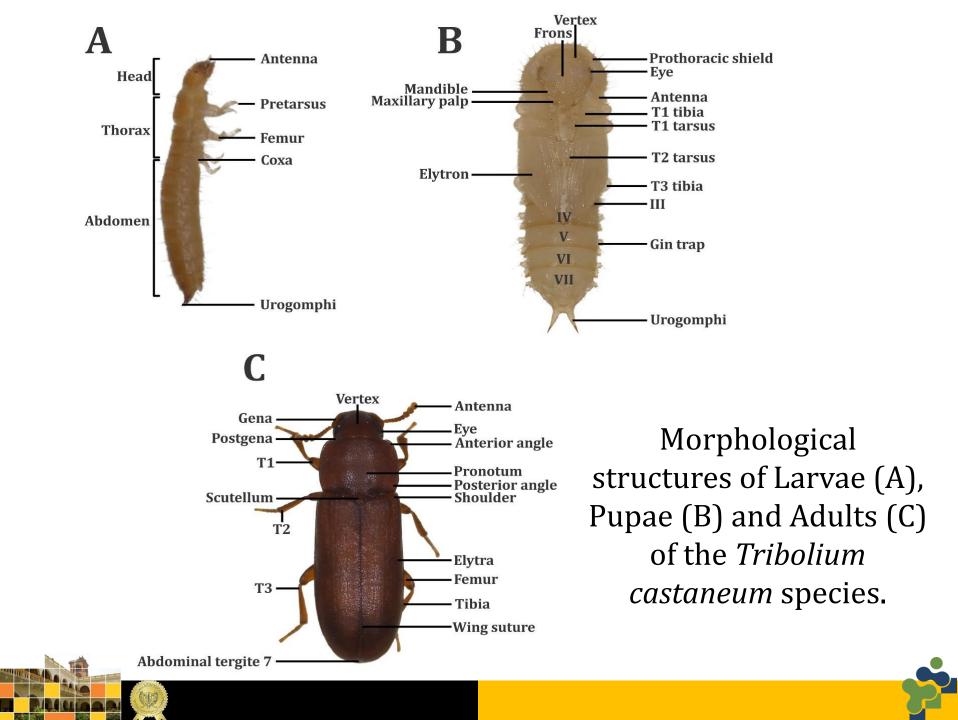

Although no morphological alterations were observed, transcriptome results suggested systems to target in future researches

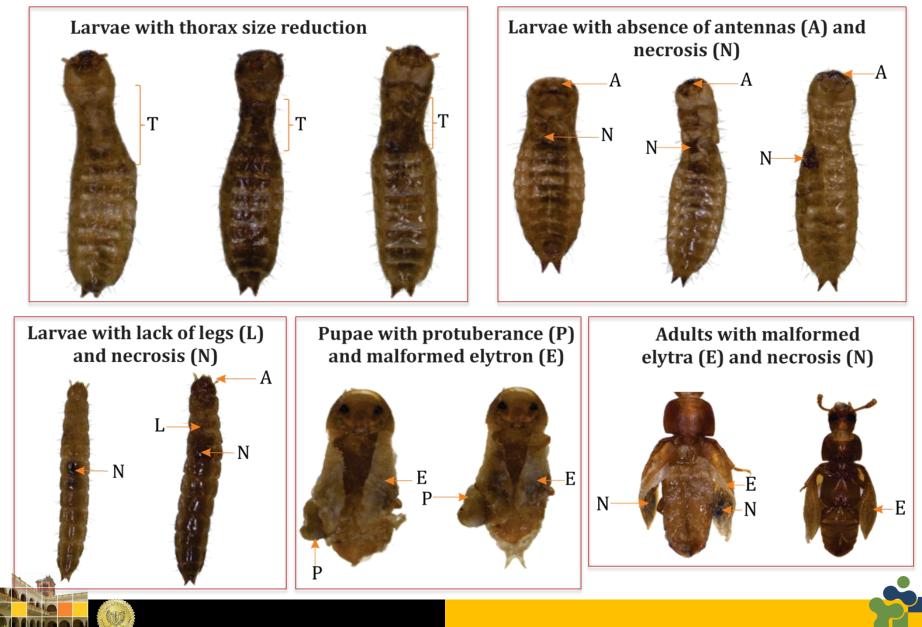

Caballero-Gallardo et al., 2018


The red flour insect Tribolium castaneum, Herbst

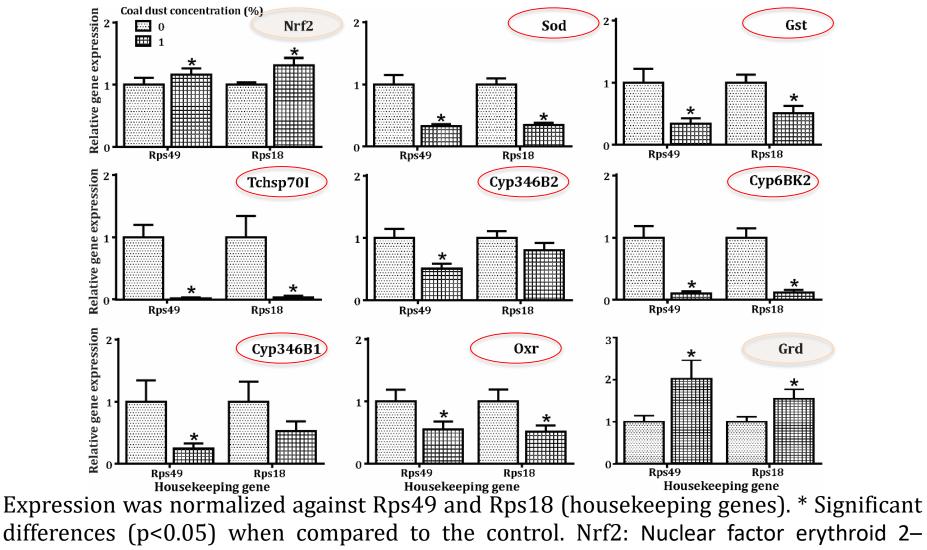
Tribolium castaneum an alternative model for the study of toxicological




Rapid life cycle Very economical Easy cultivation Its genome is sequenced


FAO, 2009, 2010; Olivero-Verbel et al., 2009

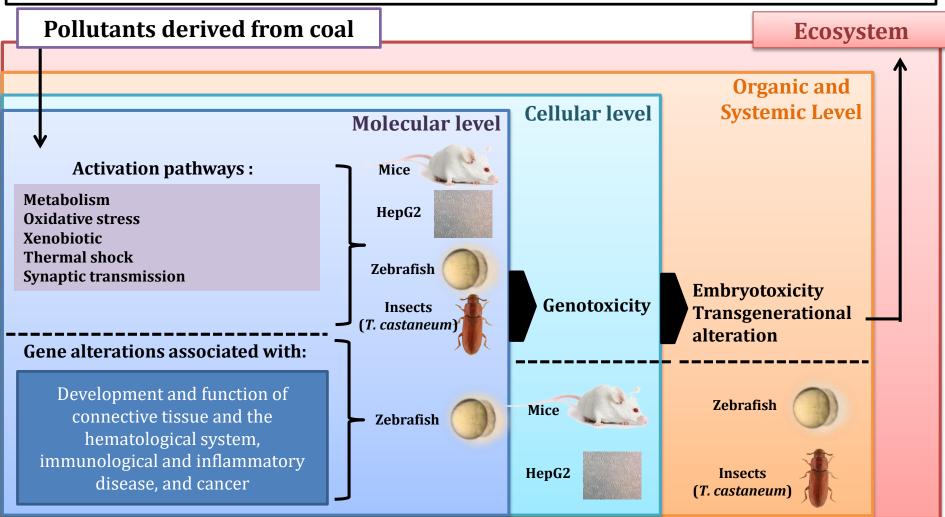
Percentages of mortality found for different life stages of *T. castaneum* from two generations, after 30 days of exposure



Morphological abnormalities on the development of the insect progeny after exposure to coal dust in flour

Relative expression of genes related to oxidative stress, thermal shock, metabolism, and synaptic transmission in adult *T. castaneum* after exposure to coal dust

related factor 2.


Remarks

- Parental exposure implies several morphological, genetic and survival responses on progeny, which highlights the great toxicological potential that this air pollutant has.
- A number of complex effects at molecular and morphological level were observed when the biological model was fed on coal dust-contaminated diet.
- □ High percentages of mortality were found at all life stages as a result of the concentration used.
- □ We consequently propose *T. castaneum* as an alternative organism to evaluate the potential toxicological effects on following generations associated with the exposure to coal dust in high-polluted environments, as is the case of the areas in which mining activities are carried out.

Caballero-Gallardo et al., 2018

The shipment of coal in Colombian ports has a negative impact on marine sediments. These effects are measurable in cellular models, suggesting these residues aren't inert at all and interact with biota.

Aqueous coal extracts, similarly as sediment particles do, are active in a fish toxicity model, producing genomic alterations. Finally, exposure to coal dust can generate a series of toxicological effects at molecular, cellular and physiological levels, as well as in the progeny.

Acknowledgements

University of Cartagena Environmental and Computational Chemistry Group The Colombian Academy of Exact, Physical and Natural Sciences Colombian Network of Women Scientists IANAS Women for Science Program Brazilian Academy of Sciences

kcaballerog@unicartagena.edu.co

We are Concerned about Environmental Health