

1. Why fish? 2. How do we measure/assess 'athletic performance' ??? 3. What? Where? Why? 4. Three main areas of research 5. The future Photo: Lizard Island, Great Barrier Reef, Jodie Rummer

Why fish?

- >50% of all vertebrate species
- Almost every body of water on planet
 - Influenced by changes in water composition/quality
- Tremendous capacity for adaptation
- >400 million years most successful vertebrates
- Success related to unique capacity for O₂ transport
- Acclimation & adaptation, contemporary issues, climate change

True athletic performance

Usain Bolt

Cheetah

Michael Phelps

Sail Fish

Avg. speed: 30.5m/s

Larval Reef Fish

Body Length: 9-35mm

Avg. speed: 12.4m/s

Body Length: 1.93m

Body Length: 1.5m

20 BL/s 12 to >20 BL/s Sagong et al (2008)

5.09 BL/s

Stride: 2.4m

Eriksen et al (2009) Sharp (1997)

Body Length: 1.5m

20 BL/s 1.4 BL/s

Avg. speed: 30.5m/s Avg. speed: 2.7m/s

O'Connor & Vozenilek (2011)

Fisher et al (2005)

Save for Later

Speaking of Science

Think Usain Bolt is fast? Scientists say fish are the world's best athletes

By Darryl Fears October 8 Follow @bydarrylfears

A woman swims near a swarm of fish in a cove off Portofino, Italy, on Sept. 9. (OLIVIER MORIN/AFP/Getty Images)

How do we measure/assess 'athletic performance'???

- O₂ uptake
- Cost of transport
- Maximum swimming speed
- Optimal swimming speed
- Burst/escape responses
- Recovery time/cost

How do we measure/assess 'athletic performance' ???

Getting O₂ into the body

Metabolic waste

morphology

perfusion

O₂ permeability

ventilation rate/amplitude

red vs. white muscle

mitochondrial function

aerobic & anaerobic enzymes

GILLS

Getting O₂ around the body

RBC counts .

Haemoglobin-O₂ affinity

capillarity

Fuelling the tissues

cardiac output

BLOOD & CIRCULATORY SYSTEM

*gene expression patterns at every step

What? Where? Why?

- Fishes, bony & cartilaginous
- Fertilization, larval, juvenile, & adult stages

- Mangrove, lagoon, reef flat, pelagic
- Stable vs. dynamic habitats

- Basic science
- Cause-and-effect relationships
- Evidence base for conservation

Conservation physiology

An integrative scientific discipline applying physiological concepts, tools, & knowledge to characterizing biological diversity & its ecological implications;

Understanding and predicting how organisms, populations, and ecosystems respond to environmental change and stressors; and

Solving conservation problems across a broad range of taxa

Impact Factor

3.460

SI: Biodiversity Conservation

12 out of 53

Editor-in-Chief Steven Cooke Editorial board

Photo: Lizard Island, Great Barrier Reef, Jodie Rummer

Cooke et al. 2013 Conservation Physiology

The New York Times

Climate-Related Death of Coral Around World Alarms Scientists

By MICHELLE INNIS APRIL 9, 2016

A turtle swimming over bleached coral near Heron Island, in the southern Great Barrier Reef. XL Catlin Seaview Survey

- Aerial surveys (911 reefs) groundtruthed with underwater surveys
- Over entire GBR, only 7% of reefs completely escaped bleaching
- North the most damaged, with 81% of reefs severely bleached
- Back-to-back bleaching in 2016 & 2017
- >65% total mortality

1. Why fish? 2. How do we measure/assess 'athletic performance' ??? 3. What? Where? Why? 4. Three main areas of research 5. The future Photo: Lizard Island, Great Barrier Reef, Jodie Rummer

Three main areas of research

Mechanistic basis for tolerance/intolerance

- Basic science
- Identify physiological mechanisms
- Plasticity potential
- Relationship to environment
- Gene expression patterns

Early life history

- Understand development
- Predict windows of vulnerability
- Stress (e.g., climate change)
- Modelling performance/fitness
- Ecological connectivity

- Predators
- K-selected species
- Hatch/newborn to adult
- Conservation/adaptation focus

Mechanistic basis for tolerance/intolerance

Taryn Laubenstein

Kelly Hannan Celia Schunter

 Changes in aerobic & anaerobic metabolism during acute heating events (e.g., bleaching)

- Evidence for maintained 'athletic performance' under elevated CO₂
- Tradeoffs between physiological & behavioural performance under elevated CO₂
- Identifying mechanism, target genes involved, changes over various time scales, ecological link

Past RummerLab

- Decrease in length, weight, condition, bone size, survival, changes in reproduction
- Behavioural impairment
- Acid-base regulation
 - Increased energetic cost of pH/ion regulation
- But, increased oxygen release to select tissues/organs!
- Mixed O₂ transport/aerobic scope responses
 - Tradeoffs?

(Nilsson et al., 2012 NCC; Munday et al., 2014 NCC; Heuer & Grosell 2014 AJP; Lefevre 2016 Cons. Physiol.; Hannan & Rummer 2018; JEB)

Early life history

Sybille Hess

Bridie Allen

Teish Prescott

Adam Downie

Björn Illing

Jain-Schlaepfer

- Developmental milestones (e.g., heart, gill, swimming muscle formation & use)
- Stress (natural or anthropogenic) during certain developmental windows (i.e., pre vs. post hatch)

- Influence of multiple stressors
 - Warming, ocean acidification, hypoxia, turbidity, noise
- Implications toward ecosystem connectivity, modeling

Challenging miniature 'athletes'

Gills & performance compromised

- Sediment directly affects gills
- Affects energy required for rest
- Affects maximum performance
- Swimming & escape responses
- Interactions with elevated temperatures & water flow
- Species-specific, some more vulnerable than others
- Problems occurring at sediment levels common on inshore reefs!

- Physiological tolerance to climate change stressors
- Influence on development & performance

lan Bouyoucos Higgins

Emily

Carolyn Wheeler

Heinrich

@RummerLab

Connor Gervais

Potential for adaptation?

- Implications toward management
 - MPAs
 - Shark sanctuaries

Is climate change a threat to sharks?

Newborn sharks also face "exhaustive challenges"

...and climate change conditions will only make things worse...

- Recovery requires 3-9 hours!
- 2. No effects of temperature within their current range
- 3. No effects of elevated CO₂
- 4. Mortality likely after exercise at high temperatures (33°C)

Research - future Physio Shark

Interactions

- Elevated temperature & (ocean acidification) CO₂ on key performance traits, e.g. swimming
- Other climate drivers, e.g., turbidity, sound pollution (increases heart rate of larval reef fish)

Mechanisms

- Maintained O₂ transport under stress
- Tradeoffs, e.g. athletic performance and behaviour

Environment

- Challenging micro-habitats
- Geographic gradients

Evolution & adaptation

Genes involves, the future of reef fishes in the face of climate change

Physiology has the potential to contribute to identifying and solving complex conservation problems

What can we do?

- Engage practitioners & policy makers (it's a two way street)
- Be relevant! (e.g., developing cause-and-effect relationships, predictive models, scaling from molecules to populations)
- greater reporting (symposia, papers)

Finding clever ways to communicate research findings – beyond the journal article, reach large & diverse audiences, and convey passion & urgency has perhaps never been more important than it is today.

