Biodiversity and sustainability in Amazonia

Marlúcia Martins useu Paraense Emilio Goeldi

Summary

- Biodiversity encompasses many different meanings. Sustainability has many meanings as well.
- I will focus on sustainability with regards to how human activities can promote the maintenance of biodiversity in the long term, and I will explore the potentialities and risks for sustainable development in Amazonia.
- Finally I would like to present some sustainable experiences developed by Amazonian indigenous peoples.

The Concept of Biodiversity

 Biodiversity constitutes a stock of genetic and ecological information. Under conditions of rapid global pressure and change, the protection of this information stock will involve attention to ecological and evolutionary processes by which biodiversity is produced and maintained.

The future of biodiversity

Figure 6.1. How Much Biddiversity Will Remain a Century from Now under Different Value Frameworks?

The outer circle in the Figure represents the present level of global biodiversity. Each inner circle represents the level of biodiversity under different value frameworks. The white area represents non-utilitarian values like ensuring equitable access to biodiversity and intrinsic values. Question marks indicate uncertainties where the boundaries exist.

Studies on Biodiversity

Map of study sites by country and by study location. Country colour represents the number of studies per country (n=528 total countries) and circle size represents the number of studies at each site (n=592 total sites; only 82 sites with Global Positioning System coordinates are shown).

Gibson et al., Nature 2011

Changes in Biodiversity

Gibson et al., Nature, 2011

Concepts of Sustainability

Components	Objectives
Social sustainability	To reduce social inequality
Economic sustainability	To increase production and richness without external dependency
Ecological sustainability	To improve environmental quality and preserve biodiversity
Spatial sustainability	To avoid population agglomeration
Cultural sustainability	To reduce cultural conflicts

Enriquez, 2008, adapted from Sachs, 2004

Ecological sustainability in the Amazonian forest

• Services for environmental quality

Protected Areas System to prevent deforestation

Implementation level of CU's

Only 4% are well implemented

Deforestation within CU's (2008-2012)

Average reduction of deforestation: 82%

Carbon flux (1996-2006)

CU's reduce emission by 34%

Ecological sustainability of Amazonia

- Despite its low level of implementation, the Brazilian Natural System of Conservation Units (SNUC, created by Legislative Act 9985/2000) has allowed for the protection of biodiversity in Amazonia, promoting socioenvironmental sustainable development and reducing carbon emission.
- The sustainability of Amazonia depends on a powerful system of protected areas.

Ecological sustainability of Amazonia

 For Amazonia, sustainability should be guaranteed by keeping the maximum amount of standup forest with or without human presence.

Economically sustainable Amazonian

products

Amazonian products

- Amazonia has considerable potentialities with regards of biodiversity in terms of products (food, medicine, cosmetics, industrial supplies).
- Such potentialities are due not only to the large number of species found there, but to the fact most of those species are yet to be fully investigated.

Economic sustainability of Amazonia Amazonian Plants for the Future

CATEGORY	POTENTIAL SPECIES	PLANTS ALREADY USED
MEDICINAL PLANTS	116	13
OIL CROPS	75	11
AROMATICS	56	07
FIBROUS PLANTS	56	08
POISONOUS PLANTS	72	03
FOOD PLANTS	123	13
FORAGE PLANTS	89	10
ORNAMENTAL PLANTS	71	09

Almeida, 2007

Food plants

Scientific name	Famíly	Commom name
Astrocaryum aculeatum	Arecaceae	tucumã-açu
Byrsonima crassifolia	Malpighiaceae	muruci
Capsicum chinensis	Solanaceae	Pimenta-de-cheiro, murupi
Capsicum frutensis	Solanaceae	Pimenta-malagueta
Dioscorea trifida	Dioscoreaceae	Cará-amazônico
Eugenia stipitata	Myrtaceae	araçá-boi
Euterpe oleracea	Arecaceae	açaí
Euterpe precatoria	Arecaceae	Açaí-solteiro
Myrciaria dubia	Myrtaceae	camu-camu, caçari
Oenocarpus bacaba, O. distichus, O. mapora, O. minor	Arecaceae	bacaba
Platonia insignis	Clusiaceae	bacuri
Spondias mombin	Anacardiaceae	taperebá
Theobroma grandiflorum	Sterculiaceae	cupuaçu

Samuel Almeida, MPEG, 2007

Copaíba (Copaifera multijuga)

Brazil nut (Bertholletia excelsa)

Economic sustainability of Amazonia

- The economic value of biodiversity for Amazonian communities is expressed in the direct use (products) of this biodiversity.
- Is extractive production enough to sustain the economy of Amazonia?
- How to aggregate value in favors of those communities?

Challenges facing biotechnology in Amazonia

- Low level of technology
- Lack of qualified or trained people
- Few institutions dedicated to development of technology
- No interest on prospective research by the industrial segment
- Difficult transportation of goods from extractive communities

Successful initiatives

- MMA/PROBEM BIOAMAZONIA molecular ecology program for pharmaceutical production
- EXTRACTA UFRJ/UFPA/GlaxoSmithKline (UK) joint enterprise - pharmaceutical production
- NATURA/communities of Comaru, Amapá cosmetics

Sustainability and values

Mebêngôkre Kayapo

mex kumrex

 The principles of the Mebêngôkre working with biodiversity are associated with the concept of 'beauty' (*mex*), that values -- far beyond landscapes and agricultural techniques -- the good condition of social networks within and outside the village, as well as essential Mebêngôkre values.

De Robert et al., 2012

Sustainability is taking good care of the world!

www.museu-goeldi.br