Digging of Phytochemicals usimg Mass Spectrometric Machines

Syed Ghulam Musharraf

Associate Professor

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Centre for Chemical and Biological Sciences (ICCBS) University of Karachi, Karachi-75270

E mail: musharraf1977@yahoo.com

ICO

Historically Important Natural Products from Plants

Historically Important Natural Products from Plants

Prostratin

Used for the treatment of (AIDS)

Homalanthus nutans

Anti-inflammatory Agent Artemisia absinthium L Isolation: 1953, Herout

Synthesis: 2004, Zhang

(-)-Littoralisone Neurotrophic Growth Factor Verbena littoralis L

Isolation and structure: 2001, Li Synthesis: 2005, Mangion

Cocaine

Appetite Supressant Erythroxylon coca Isolation: 1859, Niemann Synthesis: 1923: Willstätter

Dynemicin A

Antibiotic Micromonospora chersina

Structure: 1989, Matsumoto *et* al Synthesis: 1991, Nicolau

Ephedrin Decongestant Ephedra equisetrina Structure and synthesis: 1920, Späth and Göring

LDI Analysis of Plant Powderd Materials

Solvent Effect: LDI-MS Analysis

Figure 1. Graph between solvents of various polarities (decreasing order) and the intensity of TOF-MS ions of selected withanolides found in *Withania somnifera* leaf.

Solvent Effect: SEM Analysis

Figure 2. SEM Images of *Withania somnifera* plant material passed through 50 µm mesh sieves treated with different solvents

Effect of Plant Parts: SEM Analysis

Figure 3. SEM Images of \leq 50 µm mesh particles of various parts of *Withania somnifera* treated with CHCl₃ solvent.

Effect of Plant Particle Size

Figure 7. Microscopic images of MALDI plate spotted with Withania somnifera plant material after passing through sieves of different mesh sizes.

Screening of various Plants Species

Fig:. TOF-MS Spectra of selected plants screened after treatment with different solvents. Musharraf et al, Journal of American Chemical Society of Mass Spectrometry, (25 (4), 530-537, 2014)

Screening of various Plants Species

Fig: TOF-MS Spectra of selected plants screened after treatment with different solvents.

Characterization of Plant Metabolites

Fig. A) MALDI-TOF-MS spectrum of *Nicotiana tabacum* leaves powder. B) Product ion spectrum of ion at *m/z* 163. C) Product ion spectrum of nicotine standard solution.

Characterization of Plant Metabolites in various Plants Species

No.	Observed	Adduct ion	Plant analyzed	Proposed Metabolite
	<i>m/z</i> ,			
1	163	\mathbf{H}^+	Nicotiana tabacum	Cotinine
2	177	\mathbf{H}^+	Nicotiana tabacum	Nicotine
3	493	Na^+	Withania coagulans	Coagulin R/ Coagulin J
4	463	\mathbf{H}^+	Physallis minima	Withaphysalin A/ Withaphysalin D
5	165	\mathbf{H}^+	Ricinus communis	Recinine
6	303	\mathbf{H}^+	Ricinus communis	19-Hydroxy-3,7,11-casbatrien-5-one
7	339	\mathbf{H}^+	Catharanthus roseus	Perivine/ Cathranthine/
				Vindolinine,
8	349	\mathbf{H}^+	Catharanthus roseus	Alstonine
9	809	\mathbf{H}^+	Catharanthus roseus	Vincathicine/ Leurosine
10	393	Na^+	Nerium oleander	Δ^{16} -Dehydroadynerigenin
11	553	Na^+	Nerium oleander	Cardenolide N3
12	615	Na^+	Nerium oleander	Neritaloside
13	694	Li^+	Nerium oleander	Oleaside D
14	745	Li^+	Nerium oleander	Glucosylnerigoside,
15	474	Li^+	Datura alba	Withametelin C
16	655	Na ⁺	Datura alba	Daturametelin J
17	673	Na ⁺	Datura alba	Withametelin P
18	677	Na ⁺	Datura alba	Baimantuoluoside A/B
19	365	Li^+	Lawsonia inermis	Laxanthone II
20	543	Na ⁺	Buxus papilosa	Buxanoldine

□ LC-ESI-MS/MS analysis

Qantitative Analysis based on LC-MS/MS analysis

Mass Spectrometric Research Group

