Value-adding potential of pomegranate fruit peel: a cosmeceutical prospective

Olaniyi Amos Fawole

olaniyi@sun.ac.za

Twitter:@fawwyb

Expertise: Postharvest Technology and Value –addition of Horticultural Produce

Stellenbosch University

South African

What do I do?

✓ Ensure delivery of optimal quality and safe agricultural product for consumer acceptance and also reduce postharvest losses

How do I achieve?

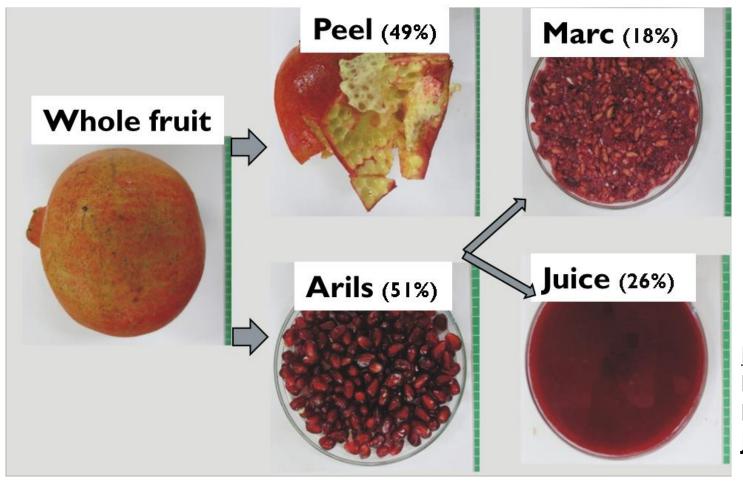
✓ I focus on maintenance of produce quality and enhancement of storage life throughout the value chain - harvesting, handling, packaging, storage and distribution

The bigger picture

- ✓ Food and nutrition security
- ✓ Maximize profit for stakeholders
- ✓ Conservation of natural resources

Pomegranate fruit

- ✓ Deciduous shrub (short tree)
- ✓ Over 1000 cultivars have been identified globally
- ✓ The peel colour yellow, green or pink overlaid with pink to deep red to fully red or deep purple depending on cultivar



Pomegranate - a high value crop

- ✓ Reported potential health benefits:
 - Antioxidant, anti-mutagenicity, anti-diabetic anti-microbial, antihypertension, fertility, sperm count and mobility
 - Over 122 bioactive compounds identified in pomegranate

Seeram et al., 2006; Lansky and Newman, 2007

Edible vs. non-edible

Pomegranate Industries
Fresh fruit
Fresh arils
Juice

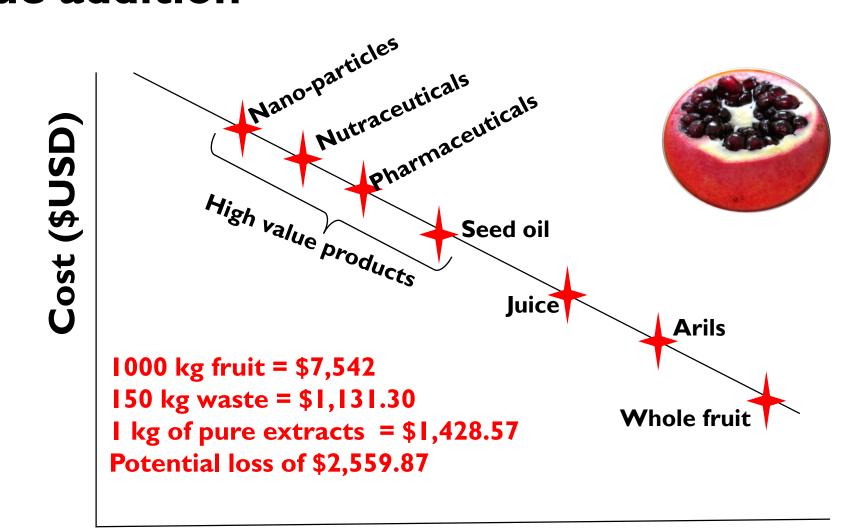
Fawole et al., 2016.

<u>Wastes</u>

- Fruit processing
- Disposal of cracked or sunburned fruits Waste disposal constitutes environmental problems

Commercial pomegranate products

ULTRA
100% PURE
MERBAL FOOD SUPPLEMENT



- All in the South African markets
- Consumer driven booming
- All imported products none made South Africa, nada!
- Yet, S. Africa is a major supplier of pomegranate in the S. Hemisphere

Value addition

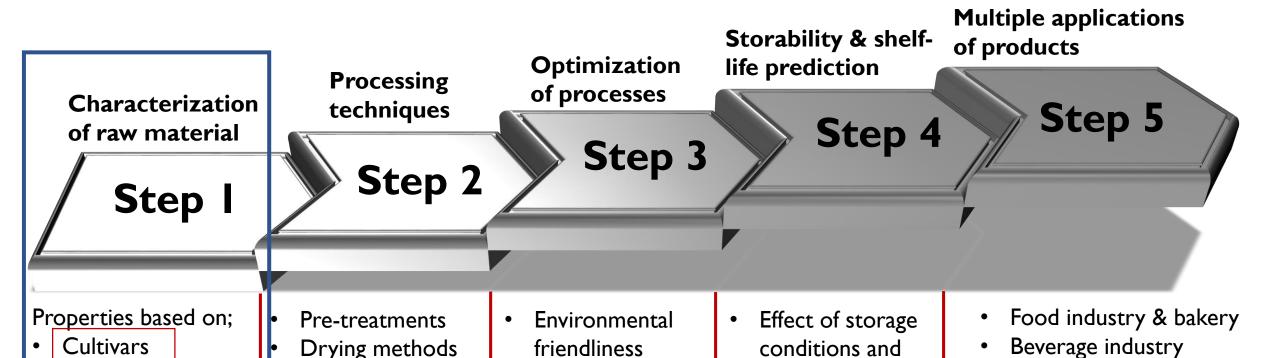
Commodity (Kg)

Exploring value adding potentials of pomegranate fruit

Cost

materials

Drying methods


Extraction method

Fruit parts

Storage duration

of raw material

Safety/Toxicity

Yield of processed

(wax formulation) pure products Active packaging

packaging material

Encapsulation and

capsulation of

Beauty industry

Nutraceuticals

Postharvest treatments

Exploring value adding potentials of pomegranate fruit

Objective:

To investigate cosmeceutical- important biological activities of pomegranate peel

Specific objectives:

- Investigate the antibacterial, antioxidant and tyrosinase enzyme inhibition
- Quantification of phytochemicals

Materials and methods

Seven cultivars

"Arakta, Bhagwa, Ganesh, Herskawitz, Molla de Elche, Ruby and Wonderful"

Sample preparation

Freeze- dried, milled and extracted in 80% methanol or water (1:5; w:v)

Antibacterial assay: Microdilution antibacterial assay

Gram-negative bacteria (Escherichia coli ATCC 11775 and Klebsiella pneumonia ATCC 13883) Gram-positive bacteria (Bacillus subtilis ATCC 6051 and Staphylococcus aureus ATCC 12600)

Antioxidant assays

Radical-scavenging ability
Ferrous ion chelating (FIC) assay
Ferric ion reducing antioxidant power (FRAP) assay

Anti-tyrosinase assay

L-3,4-dihydroxyphenylalanine (L-DOPA, Sigma) and tyrosine as substrates

Table 1 Antibacterial activity of fruit peel methanol extracts of pomegranate cultivars cultivated in South Africa

	Extract	Minimum inhibitory concentration (MIC; mg/ml)					
Cultivar		B.s	E.c	К.р	S.a	TAI	
Arakta	MeOH	0.39 ^b	0.78 ^b	0.20ª	0.39 ^b	6.00 ^b	
	Aqueous	>12.50	>12.50	>12.50	>12.50	<1.00	
Bhagwa	MeOH	0.39 ^b	0.78 ^b	0.20 ^a	0.78 ^c	5.70 ^a	
	Aqueous	>12.50	>12.50	>12.50	>12.50	<1.00	
Ganesh	MeOH	0.39 ^b	0.39 ^a	0.20 ^a	0.78 ^c	6.00 ^b	
	Aqueous	>12.50	>12.50	>12.50	>12.50	<1.00	
Herskawitz	MeOH	0.20 ^a	0.39 ^a	0.20ª	0.78 ^c	6.25°	
	Aqueous	>12.50	>12.50	>12.50	>12.50	<1.00	
Molla de Elche	MeOH	0.39 ^b	0.78 ^b	0.39 ^b	0.26 ^a	5.92 ^{ab}	
	Aqueous	>12.50	>12.50	>12.50	>12.50	<1.00	
Ruby	MeOH	0.39 ^b	0.39 ^a	0.39 ^b	0.39 ^b	6.00 ^b	
	Aqueous	>12.50	>12.50	>12.50	>12.50	<1.00	
Wonderful	MeOH	0.39 ^b	0.59 ^{ab}	0.33 ^b	0.39 ^b	5.99 ^b	
	Aqueous	>12.50	>12.50	>12.50	>12.50	<1.00	
Streptomyain (µg/ml)		3.13	3.13	2.60	5.21		

Mean values in the same column followed by different letters (a-c) represent statistical different (P < 0.05) using the Duncan's multiple range test. M/C- Minimum inhibitory concentration, TAI – Total antibacterial index, the higher the TAI the higher antibacterial activity.

Table 2 Antioxidant activity of fruit peel methanol extracts of seven pomegranate cultivars cultivated in South Africa

DPPH (%)			FIC (%)			FRAP (abs. at 593 nm)			
Cultivar	1000 μg/ml	100 μg/ml	10 μg/ml	1000 μg/ml	100 μg/ml	10 μg/ml	1000 μg/ml	100 μg/ml	10 μg/ml
Arakta	83.54±0.31 ^d	13.35±0.98 ^{ab}	5.55±0.06 ^c	79.44±0.21 ^a	49.94±0.89 ^a	37.32±1.82 ^b	1.19±0.03 ^{ns}	0.52±0.02 ^b	0.11±0.00 ^c
Bhagwa	73.02±0.26 ^{ab}	12.34±0.73 ^{ab}	1.37±0.34 ^a	84.96±1.43 ^{bc}	65.54±1.09 ^c	18.83±0.22 ^a	1.03±0.28	0.38±0.00 ^{ab}	0.04±0.01 ^a
Ganesh	83.56±0.05 ^d	16.70±0.83 ^{bc}	2.42±0.99 ^{ab}	82.98±0.18 ^b	65.82±0.51 ^c	15.80±0.52ª	1.47±0.04	0.73±0.12 ^c	0.08±0.01 ^{bc}
Herskawitz	78.06±0.71 ^c	15.18±0.97 ^{abc}	2.71±0.77 ^{ab}	87.82±0.57 ^{de}	69.97±0.25 ^d	34.32±2.45 ^b	1.29±0.04	0.34±0.01 ^{ab}	0.08±0.02 ^{bc}
Molla de Elche	71.65±0.08 ^a	10.59±0.18 ^a	1.61±0.08 ^a	86.59±0.90 ^{cd}	70.57±0.43 ^d	47.24±1.34 ^c	1.47±0.11	0.33±0.05 ^a	0.03±0.00 ^a
Ruby	83.34±0.51 ^d	19.67±2.24°	4.10±2.24 ^{bc}	83.58±0.62 ^b	53.39±1.29 ^b	47.25±0.66 ^c	1.18±0.02	0.38±0.00 ^{ab}	0.08±0.01 ^{bc}
Wonderful	74.19±1.05 ^b	12.22±3.13 ^{ab}	3.01±0.47 ^{ab}	89.67±0.72 ^e	71.02±0.38 ^d	49.65±1.26 ^c	1.32±0.16	0.33±0.01 ^a	0.06±0.00 ^{ab}
Ascorbic acid	67.02±0.06			62.15±0.98					
Trolox									0.82±0.03

Means in the same column followed by different letters (a-e) represent statistical significance (P < 0.05) according to the Duncan's multiple range test. Positive controls: Ascorbic acid and trolox.

Table 3 Effective inhibition concentration (EC₅₀) of fruit peel methanol extracts against tyrosinase

Cultivar	IC ₅₀ Monophenolase (µg/ml)	IC ₅₀ Diphenolase (µg/ml)		
Arakta	11.03±0.08 ^c	15.88±0.10 ^a		
Bhagwa	3.66±0.11 ^a	21.16±0.09 ^a		
Ganesh	25.38±0.06 ^f	40.93±0.12 ^b		
Herskawitz	7.56±0.08 ^b	59.03±0.07 ^c		
Molla de Elche	25.56±0.06 ^f	27.11±0.09 ^{ab}		
Ruby	20.33±0.07 ^d	114.9±0.08 ^e		
Wonderful	23.67±0.06 ^e	27.26±0.07 ^{ab}		
Arbutin	34.66±0.05 ⁹	98.66±0.12 ^d		

Mean values in the same column followed by different letters (a-f) represent statistical different (P < 0.05) using the Duncan's multiple range test.

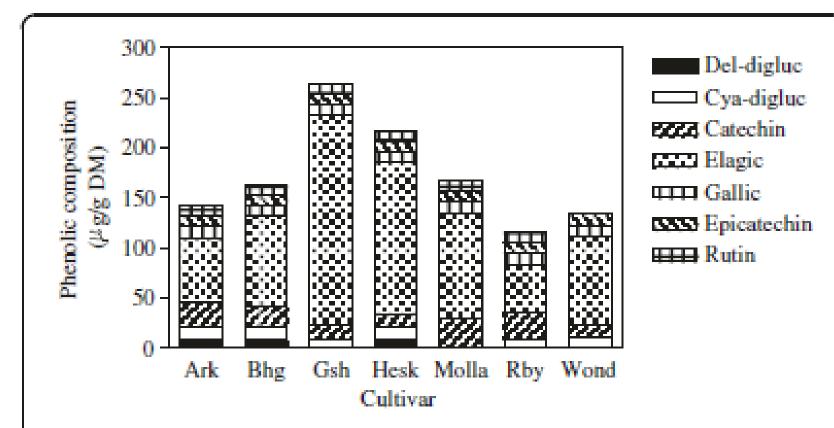
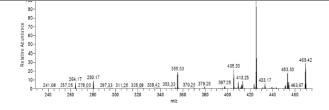



Figure 3 Phenolics composition in peel methanol extracts of seven pomegranate cultivars. Ark- Arakta, Bhg- Bhagwa, Gsh- Ganesh, Hesk- Herskawitz, Molla- Molla de Elche, Rby- Ruby & Wond- Wonderful.

Ganesh > Herskawitz > Molla de Elche > Bhagwa > Arakta > Wonderful> Ruby

Catechin, epicatechin, ellagic acid and gallic acid were found in all cultivars, of which ellagic acid was the most abundant comprising of more than 50% of total phenolic compounds detected in each cultivar

Conclusions

- Peel of the pomegranate fruit cultivars possess strong antibacterial, antioxidant and anti-tyrosinase activities
- Therefore the peel of the pomegranate fruit cultivars, instead of being wasted, could be exploited as a potential source of natural antimicrobial and antioxidant agents, as well as a potential tyrosinase inhibitor
- The findings provide scientific basis to promote value-adding of pomegranate fruit peels for cosmetic purposes
- Further studies on the isolation of active ingredients, determination of cytotoxicity and genotoxicity effects are warranted.

Fawole et al. BMC Complementary and Alternative Medicine 2012, **12**:200 http://www.biomedcentral.com/1472-6882/12/200

